美文网首页
TensorFlow简单搭建网络

TensorFlow简单搭建网络

作者: 克里斯托弗的梦想 | 来源:发表于2019-04-09 16:53 被阅读0次

    搭建神经网络基本流程

    • 训练的数据
    • 定义节点准备接收数据
    • 定义神经层:隐藏层和预测层
    • 定义loss表达式
    • 选择optimizer使loss达到最小
    import tensorflow as tf
    import numpy as np
    # 训练的数据
    x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
    
    noise = np.random.normal(0, 0.05, x_data.shape)
    y_data = np.square(x_data) - 0.5 + noise
    
    # 定义节点准备接收数据,也就是占位符
    xs = tf.placeholder(tf.float32, [None, 1])
    ys = tf.placeholder(tf.float32, [None, 1])
    
    # 定义神经层:隐藏层和预测层
    def add_layer(inputs, in_size, out_size, activation_function=None):
       # add one more layer and return the output of this layer
       Weights = tf.Variable(tf.random_normal([in_size, out_size]))
       biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
       Wx_plus_b = tf.matmul(inputs, Weights) + biases
       if activation_function is None:
           outputs = Wx_plus_b
       else:
           outputs = activation_function(Wx_plus_b)
       return outputs
    
    # 输入值是xs, 隐藏层有10个神经元
    l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
    # 输入值是隐藏层l1,预测层输出1个结果
    prediction = add_layer(l1, 10, 1, activation_function=None)
    
    # 定义loss表达式,以下采用平方差误差函数
    loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), reduction_indices=[1]))
    # 选择optimizer使loss达到最小,以下采用梯度下降法,学习率为0.1
    train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
    
    # 对所有变量进行初始化
    init = tf.global_variables_initializer()
    sess = tf.Session()
    # 上面定义的都没有运算,直到 sess.run 才会开始运算
    sess.run(init)
    
    # 迭代 1000 次学习,sess.run optimizer
    for i in range(1000):
       # training train_step 和 loss 都是由 placeholder 定义的运算,所以这里要用 feed 传入参数
       sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
       if i % 50 == 0:
           # 每迭代50的倍数,打印损失值
           print(sess.run(loss, feed_dict={xs: x_data, ys: y_data}))
    
    

    从简短的代码中,看到TensorFlow的数据结构有:

    • placeholder,主要用来喂数据
    • Variable,定义一个变量,主要定义w和b

    激励函数

    dropout
    dropout 是指在深度学习网络的训练过程中,按照一定的概率将一部分神经网络单元暂时从网络中丢弃,相当于从原始的网络中找到一个更瘦的网络。

    代码实现就是在 add layer 函数里加上 dropout, keep_prob 就是保持多少不被 drop,在迭代时在 sess.run 中被 feed

    def add_layer(inputs, in_size, out_size, layer_name, activation_function=None, ):
        # add one more layer and return the output of this layer
        Weights = tf.Variable(tf.random_normal([in_size, out_size]))
        biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, )
        Wx_plus_b = tf.matmul(inputs, Weights) + biases
        
        # here to dropout
        # 在 Wx_plus_b 上drop掉一定比例
        # keep_prob 保持多少不被drop,在迭代时在 sess.run 中 feed
        Wx_plus_b = tf.nn.dropout(Wx_plus_b, keep_prob)
        
        if activation_function is None:
            outputs = Wx_plus_b
        else:
            outputs = activation_function(Wx_plus_b, )
        tf.histogram_summary(layer_name + '/outputs', outputs)  
        return outputs
    

    可视化Tensorboard
    主要自动显示我们所建造的神经网络流程图,用 with tf.name_scope 定义各个框架,注意看代码注释中的区别:

    import tensorflow as tf
    
    
    def add_layer(inputs, in_size, out_size, activation_function=None):
        # add one more layer and return the output of this layer
        # 区别:大框架,定义层 layer,里面有 小部件
        with tf.name_scope('layer'):
            # 区别:小部件
            with tf.name_scope('weights'):
                Weights = tf.Variable(tf.random_normal([in_size, out_size]), name='W')
            with tf.name_scope('biases'):
                biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name='b')
            with tf.name_scope('Wx_plus_b'):
                Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases)
            if activation_function is None:
                outputs = Wx_plus_b
            else:
                outputs = activation_function(Wx_plus_b, )
            return outputs
    
    # 区别:大框架,里面有 inputs x,y
    with tf.name_scope('inputs'):
        xs = tf.placeholder(tf.float32, [None, 1], name='x_input')
        ys = tf.placeholder(tf.float32, [None, 1], name='y_input')
    
    # add hidden layer
    l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
    # add output layer
    prediction = add_layer(l1, 10, 1, activation_function=None)
    
    # the error between prediciton and real data
    # 区别:定义框架 loss
    with tf.name_scope('loss'):
        loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
                                            reduction_indices=[1]))
    
    # 区别:定义框架 train
    with tf.name_scope('train'):
        train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
    
    sess = tf.Session()
    
    # 区别:sess.graph 把所有框架加载到一个文件中放到文件夹"logs/"里 
    # 接着打开terminal,进入你存放的文件夹地址上一层,运行命令 tensorboard --logdir='logs/'
    # 会返回一个地址,然后用浏览器打开这个地址http://localhost:6006,在 graph 标签栏下打开
    writer = tf.train.SummaryWriter("logs/", sess.graph)
    # important step
    sess.run(tf.global_variables_initializer())
    

    保存和加载
    训练好了一个神经网络后,可以保存起来下次使用时再次加载:

    
    import tensorflow as tf
    import numpy as np
    
    ## Save to file
    # remember to define the same dtype and shape when restore
    W = tf.Variable([[1,2,3],[3,4,5]], dtype=tf.float32, name='weights')
    b = tf.Variable([[1,2,3]], dtype=tf.float32, name='biases')
    
    init= tf.global_variables_initializer()
    
    saver = tf.train.Saver()
    
    # 用 saver 将所有的 variable 保存到定义的路径
    with tf.Session() as sess:
       sess.run(init)
       save_path = saver.save(sess, "my_net/save_net.ckpt")
       print("Save to path: ", save_path)
    
    ##############################################################################################
    # 注意:这两段分开执行,第一步保存变量执行完,再执行加载变量,不然会报错。
    # restore variables
    # redefine the same shape and same type for your variables
    W = tf.Variable(np.arange(6).reshape((2, 3)), dtype=tf.float32, name="weights")
    b = tf.Variable(np.arange(3).reshape((1, 3)), dtype=tf.float32, name="biases")
    
    # not need init step
    
    saver = tf.train.Saver()
    # 用 saver 从路径中将 save_net.ckpt 保存的 W 和 b restore 进来
    with tf.Session() as sess:
        saver.restore(sess, "my_net/save_net.ckpt")
        print("weights:", sess.run(W))
        print("biases:", sess.run(b))
    

    tensorflow 现在只能保存 variables,还不能保存整个神经网络的框架,所以再使用的时候,需要重新定义框架,然后把 variables 放进去学习。

    参考具体博客地址:https://www.jianshu.com/p/e112012a4b2d

    相关文章

      网友评论

          本文标题:TensorFlow简单搭建网络

          本文链接:https://www.haomeiwen.com/subject/dldiiqtx.html