美文网首页编程学习
R语言可视化之案例收集篇

R语言可视化之案例收集篇

作者: 思考问题的熊 | 来源:发表于2018-02-11 16:44 被阅读49次

    qplot 使用

    导入所需数据格式为data.frame

    data(mtcars)
    df <- mtcars[, c("mpg", "cyl", "wt")]
    head(df)
    

    qplot()基本用法

    qplot(x, y=NULL, data, geom="auto",
          xlim = c(NA, NA), ylim =c(NA, NA))
    
    # geom 画什么图;main 题目;xlab,ylab xy轴标签
    # color 颜色;size 点大小;shape 点形状
    

    Scatter plots 散点图

    library(ggplot2)
    # 基本款
    qplot(mpg, wt, data=mtcars)
    # 增加standard error和 smoothed line
    qplot(mpg, wt, data = mtcars, geom = c("point", "smooth"))
    # 分组增加smoothed line
    qplot(mpg, wt, data = mtcars, color = factor(cyl),
          geom=c("point", "smooth"))
    
    image.png

    boxplot violin plot

    boxplot
    geom="boxplot"

    dotplot
    geom="dotplot"

    violin
    geom="violin"

    # Basic box plot from data frame
    qplot(group, weight, data = PlantGrowth,
          geom=c("boxplot"), fill = group)
    # fill 填充颜色
    
    # Dot plot
    qplot(group, weight, data = PlantGrowth,
          geom=c("dotplot"),
          stackdir = "center", binaxis = "y",color = group, fill = group)
    
    # Violin plot
    qplot(group, weight, data = PlantGrowth,
          geom=c("violin"), trim = FALSE, fill = group)
    
    

    histogram density plot

    qplot(Sepal.Length, data = iris, geom = "histogram", binwidth=0.1)
    qplot(Sepal.Length, data = iris, geom = "density", color = Species,
          main = "test", xlab = "x_test", ylab = "y_test")
    

    ggplot2 box plot

    ToothGrowth$dose <- as.factor(ToothGrowth$dose)
    # notched box plot
    ggplot(ToothGrowth, aes(x=dose, y=len)) +
      geom_boxplot(notch=TRUE, outlier.color = "red")
    

    改变线颜色

    三种方法

    p<-ggplot(ToothGrowth, aes(x=dose, y=len, color=dose)) +
      geom_boxplot()
    p
    p+scale_color_manual(values=c("#999999", "#E69F00", "#56B4E9"))
    p+scale_color_brewer(palette="Dark2")
    

    改变箱颜色

    p<-ggplot(ToothGrowth, aes(x=dose, y=len, fill=dose)) +
      geom_boxplot()
    p
    # Use custom color palettes
    p+scale_fill_manual(values=c("#999999", "#E69F00", "#56B4E9"))
    # use brewer color palettes
    p+scale_fill_brewer(palette="Dark2")
    
    # 改变横坐标展示顺序
    p + scale_x_discrete(limits=c("2", "0.5", "1"))
    

    多组展示

    ggplot(ToothGrowth, aes(x=dose, y=len, fill=supp)) +
      geom_boxplot()
    

    定制

    
    bp <- ggplot(ToothGrowth, aes(x=dose, y=len, fill=dose)) +
      geom_boxplot()+
      labs(title="Plot of length  per dose",x="Dose (mg)", y = "Length")
    bp + theme_classic()
    bp + scale_fill_brewer(palette="Blues") + theme_classic()
    bp + scale_fill_brewer(palette="Dark2") + theme_minimal()
    

    violin plots

    ToothGrowth$dose <- as.factor(ToothGrowth$dose)
    
    # trim
    p <- ggplot(ToothGrowth, aes(x=dose, y=len)) +
      geom_violin()
    p
    # no trim
    p2<-ggplot(ToothGrowth, aes(x=dose, y=len)) +
      geom_violin(trim=FALSE)
    p2
    

    显示范围

    # 显示范围
    p + scale_x_discrete(limits=c("0.5", "2"))
    
    

    添加描述统计量

    使用stat_summary()

    # violin plot with mean points
    p + stat_summary(fun.y=mean, geom="point", shape=23, size=2)
    
    # 加箱线图
    p + geom_boxplot(width=0.1)
    
    

    修改颜色

    和box plot 类似

    
    p<-ggplot(ToothGrowth, aes(x=dose, y=len, color=dose)) +
      geom_violin(trim=FALSE)
    p
    # Use custom color palettes
    p+scale_color_manual(values=c("#999999", "#E69F00", "#56B4E9"))
    # Use brewer color palettes
    p+scale_color_brewer(palette="Dark2")
    

    定制

    dp <- ggplot(ToothGrowth, aes(x=dose, y=len, fill=dose)) +
      geom_violin(trim=FALSE)+
      geom_boxplot(width=0.1, fill="white")+
      labs(title="Plot of length  by dose",x="Dose (mg)", y = "Length")
    dp
    dp + scale_fill_brewer(palette="Blues") + theme_classic()
    

    histogram 直方图

    基础

    #构造数据
    set.seed(1234)
    df <- data.frame(
      sex=factor(rep(c("F", "M"), each=200)),
      weight=round(c(rnorm(200, mean=55, sd=5), rnorm(200, mean=65, sd=5)))
      )
    
    # 基础
    ggplot(df, aes(x=weight)) + geom_histogram()
    
    # 加density
    ggplot(df, aes(x=weight)) +
     geom_histogram(aes(y=..density..), colour="black", fill="white")+
     geom_density(alpha=.2, fill="#FF6666")
    
    

    修改颜色并分组

    # Change histogram plot line colors by groups
    ggplot(df, aes(x=weight, color=sex)) +
      geom_histogram(fill="white")
    # Overlaid histograms
    ggplot(df, aes(x=weight, color=sex)) +
      geom_histogram(fill="white", alpha=0.7, position="identity")
    
    ggplot(df, aes(x=weight, color=sex)) +
      geom_histogram(fill="white", alpha=.7, position="dodge")
    
    library(plyr)
    mu <- ddply(df, "sex", summarise, grp.mean=mean(weight))
    p<-ggplot(df, aes(x=weight, color=sex)) +
      geom_histogram(fill="white", position="dodge")+
      geom_vline(data=mu, aes(xintercept=grp.mean, color=sex),
                 linetype="dashed")+
      theme(legend.position="top")
    p
    # Use custom color palettes
    p+scale_color_manual(values=c("#999999", "#E69F00", "#56B4E9"))
    # Use brewer color palettes
    p+scale_color_brewer(palette="Dark2")
    

    填充

    # Use semi-transparent fill
    p<-ggplot(df, aes(x=weight, fill=sex, color=sex)) +
      geom_histogram(position="identity", alpha=0.5)
    p
    p+scale_color_manual(values=c("#999999", "#E69F00", "#56B4E9"))+
      scale_fill_manual(values=c("#999999", "#E69F00", "#56B4E9"))
    

    定制

    ggplot(df, aes(x=weight, color=sex, fill=sex)) +
    geom_histogram(aes(y=..density..), position="identity", alpha=0.5)+
    geom_density(alpha=0.6)+
    geom_vline(data=mu, aes(xintercept=grp.mean, color=sex),
               linetype="dashed")+
    scale_color_manual(values=c("#999999", "#E69F00", "#56B4E9"))+
    scale_fill_manual(values=c("#999999", "#E69F00", "#56B4E9"))+
    labs(title="Weight histogram plot",x="Weight(kg)", y = "Density")+
    theme_classic()
    

    desnsity plot

    p<-ggplot(df, aes(x=weight, fill=sex)) +
      geom_density(alpha=0.4)
    p
    # Add mean lines
    p+geom_vline(data=mu, aes(xintercept=grp.mean, color=sex),
                 linetype="dashed")
    

    scatter plots

    mtcars$cyl <- as.factor(mtcars$cyl)
    
    # Change the point size
    ggplot(mtcars, aes(x=wt, y=mpg)) +
      geom_point(aes(size=qsec))
    
    # Add the regression line
    ggplot(mtcars, aes(x=wt, y=mpg)) +
      geom_point()+
      geom_smooth(method=lm)
    # Remove the confidence interval
    ggplot(mtcars, aes(x=wt, y=mpg)) +
      geom_point()+
      geom_smooth(method=lm, se=FALSE)
    # Loess method
    ggplot(mtcars, aes(x=wt, y=mpg)) +
      geom_point()+
      geom_smooth()
    
    

    添加 Error bar

    
    #+++++++++++++++++++++++++
    # Function to calculate the mean and the standard deviation
      # for each group
    #+++++++++++++++++++++++++
    # data : a data frame
    # varname : the name of a column containing the variable
      #to be summariezed
    # groupnames : vector of column names to be used as
      # grouping variables
    data_summary <- function(data, varname, groupnames){
      require(plyr)
      summary_func <- function(x, col){
        c(mean = mean(x[[col]], na.rm=TRUE),
          sd = sd(x[[col]], na.rm=TRUE))
      }
      data_sum<-ddply(data, groupnames, .fun=summary_func,
                      varname)
      data_sum <- rename(data_sum, c("mean" = varname))
     return(data_sum)
    }
    
    df2 <- data_summary(ToothGrowth, varname="len",
                        groupnames=c("supp", "dose"))
    # Convert dose to a factor variable
    df2$dose=as.factor(df2$dose)
    
    library(ggplot2)
    # Default bar plot
    p<- ggplot(df2, aes(x=dose, y=len, fill=supp)) +
      geom_bar(stat="identity", color="black",
               position=position_dodge()) +
      geom_errorbar(aes(ymin=len-sd, ymax=len+sd), width=.2,
                     position=position_dodge(.9))
    print(p)
    # Finished bar plot
    p+labs(title="Tooth length per dose", x="Dose (mg)", y = "Length")+
       theme_classic() +
       scale_fill_manual(values=c('#999999','#E69F00'))
    
    # Default line plot
    p<- ggplot(df2, aes(x=dose, y=len, group=supp, color=supp)) +
      geom_line() +
      geom_point()+
      geom_errorbar(aes(ymin=len-sd, ymax=len+sd), width=.2,
                     position=position_dodge(0.05))
    print(p)
    # Finished line plot
    p+labs(title="Tooth length per dose", x="Dose (mg)", y = "Length")+
       theme_classic() +
       scale_color_manual(values=c('#999999','#E69F00'))
    
    

    资料来源

    http://www.sthda.com/english/wiki/ggplot2-essentials


    加入靠谱熊基地,和大家一起交流

    相关文章

      网友评论

        本文标题:R语言可视化之案例收集篇

        本文链接:https://www.haomeiwen.com/subject/dlxltftx.html