美文网首页我爱编程
TensorFlow 基础系列(一)

TensorFlow 基础系列(一)

作者: fangxu622 | 来源:发表于2017-08-24 09:38 被阅读337次

    安装配置什么的不讲了,就是安装英伟达驱动,CUDA,坑也比较多,值得专门写一篇,值得注意一点。tensorflow从1.0之后好像要求CUDA8.0,直接跑hello world 代码;

    import tensorflow as tf
    hello = tf.constant('Hello, TensorFlow!')
    sess = tf.Session()
    print sess.run(hello)
    

    首先,通过tf.constant创建一个常量,然后启动Tensorflow的Session,调用sess的run方法来启动整个graph。 接下来我们做下简单的数学的方法:

    import tensorflow as tf
    a = tf.constant(2)
    b = tf.constant(3)
    with tf.Session() as sess:
        print "a=2, b=3"
        print "Addition with constants: %i" % sess.run(a+b)
        print "Multiplication with constants: %i" % sess.run(a*b)
    

    tensorflow中保存数据的利器,placeholder(type,strucuct…)它的第一个参数是你要保存的数据的数据类型,大多数是tensorflow中的float32数据类型,后面的参数就是要保存数据的结构,比如要保存一个1×2的矩阵,则struct=[1 2]。它在使用的时候和前面的variable不同的是在session运行阶段,需要给placeholder提供数据,利用feed_dict的字典结构给placeholdr变量“喂数据”,具体使用如下

    placeholder 使用

    import tensorflow as tf
    a = tf.placeholder(tf.int16)
    b = tf.placeholder(tf.int16)
    add = tf.add(a, b)
    mul = tf.multiply(a, b)
    with tf.Session() as sess:
        # Run every operation with variable input
        print "Addition with variables: %i" % sess.run(add, feed_dict={a: 2, b: 3})
        print "Multiplication with variables: %i" % sess.run(mul, feed_dict={a: 2, b: 3})
    # output:
    Addition with variables: 5
    Multiplication with variables: 6
    matrix1 = tf.constant([[3., 3.]])
    matrix2 = tf.constant([[2.],[2.]])
    product=tf.matmul(matrix1,matrix2)
    with tf.Session() as sess:
        result = sess.run(product)
        print result
        #result:
        [[12.]]
    

    注:
    Tensorflow中废弃的API及替代
    tf.mul tf.sub tf.neg 已经废弃
    分别可用tf.multiply tf.subtract tf.negative替代.

    线性回归:以下代码来自https://github.com/aymericdamien/TensorFlow-Examples/,仅作学习用

    import tensorflow as tf
    import numpy
    import matplotlib.pyplot as plt
    rng = numpy.random
    
    # Parameters
    learning_rate = 0.01
    training_epochs = 2000
    display_step = 50
    
    # Training Data
    train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,7.042,10.791,5.313,7.997,5.654,9.27,3.1])
    train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,2.827,3.465,1.65,2.904,2.42,2.94,1.3])
    n_samples = train_X.shape[0]
    
    # tf Graph Input
    X = tf.placeholder("float")
    Y = tf.placeholder("float")
    
    # Create Model
    
    # Set model weights
    W = tf.Variable(rng.randn(), name="weight")
    b = tf.Variable(rng.randn(), name="bias")
    
    # Construct a linear model
    activation = tf.add(tf.multiply(X, W), b)
    
    # Minimize the squared errors
    cost = tf.reduce_sum(tf.pow(activation-Y, 2))/(2*n_samples) #L2 loss
    optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) #Gradient descent
    
    # Initializing the variables
    init = tf.initialize_all_variables()
    
    # Launch the graph
    with tf.Session() as sess:
        sess.run(init)
    
        # Fit all training data
        for epoch in range(training_epochs):
            for (x, y) in zip(train_X, train_Y):
                sess.run(optimizer, feed_dict={X: x, Y: y})
    
            #Display logs per epoch step
            if epoch % display_step == 0:
                print "Epoch:", '%04d' % (epoch+1), "cost=", \
                    "{:.9f}".format(sess.run(cost, feed_dict={X: train_X, Y:train_Y})), \
                    "W=", sess.run(W), "b=", sess.run(b)
    
        print "Optimization Finished!"
        print "cost=", sess.run(cost, feed_dict={X: train_X, Y: train_Y}), \
              "W=", sess.run(W), "b=", sess.run(b)
    
        #Graphic display
        plt.plot(train_X, train_Y, 'ro', label='Original data')
        plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
        plt.legend()
        plt.show()
    
    image.png

    逻辑回归

    import tensorflow as tf
    # Import MINST data
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
    
    # Parameters
    learning_rate = 0.01
    training_epochs = 25
    batch_size = 100
    display_step = 1
    
    # tf Graph Input
    x = tf.placeholder(tf.float32, [None, 784]) # mnist data image of shape 28*28=784
    y = tf.placeholder(tf.float32, [None, 10]) # 0-9 digits recognition => 10 classes
    
    # Set model weights
    W = tf.Variable(tf.zeros([784, 10]))
    b = tf.Variable(tf.zeros([10]))
    
    # Construct model
    pred = tf.nn.softmax(tf.matmul(x, W) + b) # Softmax
    
    # Minimize error using cross entropy
    cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred), reduction_indices=1))
    # Gradient Descent
    optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
    
    # Initializing the variables
    init = tf.initialize_all_variables()
    
    # Launch the graph
    with tf.Session() as sess:
        sess.run(init)
    
        # Training cycle
        for epoch in range(training_epochs):
            avg_cost = 0.
            total_batch = int(mnist.train.num_examples/batch_size)
            # Loop over all batches
            for i in range(total_batch):
                batch_xs, batch_ys = mnist.train.next_batch(batch_size)
                # Run optimization op (backprop) and cost op (to get loss value)
                _, c = sess.run([optimizer, cost], feed_dict={x: batch_xs,
                                                              y: batch_ys})
                # Compute average loss
                avg_cost += c / total_batch
            # Display logs per epoch step
            if (epoch+1) % display_step == 0:
                print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)
    
        print "Optimization Finished!"
    
        # Test model
        correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
        # Calculate accuracy
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        print "Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels})
    
        # result :
        Epoch: 0001 cost= 29.860467369
        Epoch: 0002 cost= 22.001451784
        Epoch: 0003 cost= 21.019925554
        Epoch: 0004 cost= 20.561320320
        Epoch: 0005 cost= 20.109135756
        Epoch: 0006 cost= 19.927862290
        Epoch: 0007 cost= 19.548687116
        Epoch: 0008 cost= 19.429119071
        Epoch: 0009 cost= 19.397068211
        Epoch: 0010 cost= 19.180813479
        Epoch: 0011 cost= 19.026808132
        Epoch: 0012 cost= 19.057875510
        Epoch: 0013 cost= 19.009575057
        Epoch: 0014 cost= 18.873240641
        Epoch: 0015 cost= 18.718575359
        Epoch: 0016 cost= 18.718761925
        Epoch: 0017 cost= 18.673640560
        Epoch: 0018 cost= 18.562128253
        Epoch: 0019 cost= 18.458205289
        Epoch: 0020 cost= 18.538211225
        Epoch: 0021 cost= 18.443384213
        Epoch: 0022 cost= 18.428727668
        Epoch: 0023 cost= 18.304270616
        Epoch: 0024 cost= 18.323529782
        Epoch: 0025 cost= 18.247192113
        Optimization Finished!
        (10000, 784)
        Accuracy 0.9206
    

    相关文章

      网友评论

        本文标题:TensorFlow 基础系列(一)

        本文链接:https://www.haomeiwen.com/subject/dmlrrxtx.html