FM算法

作者: 喆科 | 来源:发表于2019-07-11 16:42 被阅读0次

    因子分解机(Factorization Machine, FM)是由Steffen Rendle提出的一种基于矩阵分解的机器学习算法。目前,被广泛的应用于广告预估模型中,相比LR而言,效果强了不少。

    一、FM背景

    FM(Factorization Machine)主要目标是:解决数据稀疏的情况下,特征怎样组合的问题。以一个广告分类的问题为例,根据用户画像、广告位以及一些其他的特征,来预测用户是否会点击广告(二分类问题)。数据如下:


    示例数据.png

    Clicked?是分类值,表明用户是否点击了此广告。1表示点击,0表示未点击。而Country,Day,Ad_type则是Categorical特征(类别特征),一般都是进行one-hot编码处理。

    将上面的离散特征数据进行one-hot编码以后(假设Country,Day,Ad_type类别只有图中几种),如下图所示

    经one-hot编码后的数据.png

    二、FM优点

    ① FMs allow parameter estimation under very sparse data where SVMs fails.(FM模型可以在非常稀疏的数据中进行合理的参数估计,而SVM做不到这点)

    FMs have linear complexity,can be optimized in the primal and do not rely on support vectors like SVMs.
    (在FM模型的复杂度是线性的,优化效果很好,而且不需要像SVM一样依赖于支持向量。)

    ③ FMs are a general predictor that can work with any real valued feature vector. In contrast to this, other state-of-the-art factorization models work only on very restricted input data.
    (FM是一个通用模型,它可以用于任何特征为实值的情况。而其他的因式分解模型只能用于一些输入数据比较固定的情况。)
    三、FM模型
    在一般的线性模型中,是各个特征独立考虑的,没有考虑到特征与特征之间的相互关系。但实际上,大量的特征之间是有关联的。最简单的以电商为例,一般女性用户看化妆品服装之类的广告比较多,而男性更青睐各种球类装备。那很明显,女性这个特征与化妆品类服装类商品有很大的关联性,男性这个特征与球类装备的关联性更为密切。如果我们能将这些有关联的特征找出来,显然是很有意义的。

    一般的线性模型为(nn为特征维度):


    线性模型.png

    对于度为2的因子分解机(FM)的模型为:


    FM Model.png

    其中,v∈Rn,k,<vi,vj>表示的是两个大小为k的向量之间的点积:


    向量之间的点积计算.png

    与线性模型相比,FM的模型就多了后面特征组合的部分。

    四、FM求解

    在基本线性回归模型的基础上引入交叉项,如下:


    image.png

    组合部分的特征相关参数共有n(n−1)2n(n−1)2个。但是在数据很稀疏的情况下,满足xixi,xjxj都不为0的情况非常少,这样将导致ωijωij无法通过训练得出,无法对相应的参数进行估计。

    这里,采用的方法是:对每一个特征分量xixi引入辅助向量vi=(vi1,vi2,...,vik)vi=(vi1,vi2,...,vik)。然后,利用vivTjvivjT对交叉项的系数ωijωij进行估计

    ω^ij=viv^Tj


    举证列变换.png


    image.png

    这就对应了一种矩阵的分解。对k值的限定,对FM的表达能力有一定的影响,下图为论文中说明的k值选取原则。


    image.png

    下面,求<vi,vj>,这块的求解用到了
    ((a+b+c)^2−a^2−b^2−c^2)/2求出交叉项。过程如下:

    推演过程.png

    相关文章

      网友评论

          本文标题:FM算法

          本文链接:https://www.haomeiwen.com/subject/dnhdkctx.html