Handler机制是Android中的通信机制,源码比较简单
1.消息机制
Android消息机制,其实也就是Handler机制,主要用于UI线程和子线程之间交互。众所周知,一般情况下,出于安全的考虑,所有与UI控件的操作都要放在主线程及UI线程,而一些耗时操作应当放在子线程中。当在子线程中完成耗时操作并要对UI控件进行操作时,就要用Handler来控制了。在这一套消息机制中,首先要明确这样几个概念:
- Handler:消息的控制器
- Message:消息的载体
- MessageQueue:存放消息
- Looper:控制消息队列的循环
(MessageQueue严格意义上说并不是一个存放消息的队列,Message本身通过next一个一个的连在一起,通过单链表形成了一个队列,MessageQueue只是可以对这个队列进行部分操作,比如入队)
下面一段简单的代码就展示了Handler的用法:
private Handler handler = new Handler(){
@Override
public void handleMessage(Message msg) {
super.handleMessage(msg);
textView.setText("对UI进行操作");
}
};
@Override
protected void onCreate(Bundle savedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
textView = (TextView) findViewById(R.id.mytv);
new Thread(new Runnable() {
@Override
public void run() {
//模拟耗时操作
SystemClock.sleep(3000);
handler.sendMessage(new Message());
}
}).start();
}
可以看到,在子线程中通过发送一个消息 Message,然后再由Handler处理接收到的消息,下面我将一步一步看sdk的源码了解他的原理。
2.发送消息:sendMessage
跟踪sendMessage()/sendEmptyMessage():
public final boolean sendMessage(Message msg){
return sendMessageDelayed(msg, 0);
}
public final boolean sendEmptyMessage(int what){
return sendEmptyMessageDelayed(what, 0);
}
public final boolean sendEmptyMessageDelayed(int what, long delayMillis) {
Message msg = Message.obtain();
msg.what = what;
return sendMessageDelayed(msg, delayMillis);
}
可以看到,无论是sendMessage() 还是sendEmptyMessage(),最后都会调用sendMessageDelayed()方法。不同之处在于,sendMessage()方法接受的是一个Message对象,然后将这个对象传给sendMessageDelayed(),而sendEmptyMessage()需要的是一个int值what,然后通过Message.obtain()方法得到一个Mesage对象,再将what值赋给他,最后传给sendMessageDelayed()。类似的还有sendMessageAtFrontOfQueue()和sendEmptyMessageAtTime()等方法,总之就是需要一个Message对象并将他传给sendMessageDelayed(); 这里有两个点需要注意一下,第一点,what值是干什么的?第二点,new出来的Message对象和调用Message.obtain()方法得到的对象有什么区别呢? 这是对what的描述:
/**
* User-defined message code so that the recipient can identify
* what this message is about. Each {@link Handler} has its own name-space
* for message codes, so you do not need to worry about yours conflicting
* with other handlers.
*/
public int what;
可见,what就是一条消息的消息代码,由于不同的handler都有自己的命名空间,所以我们不必担心会引起冲突。 再来看看obtain():
/**
* Return a new Message instance from the global pool. Allows us to
* avoid allocating new objects in many cases.
*/
public static Message obtain() {
synchronized (sPoolSync) {
if (sPool != null) {
Message m = sPool;
sPool = m.next;
m.next = null;
m.flags = 0; // clear in-use flag
sPoolSize--;
return m;
}
}
return new Message();
}
原来android已经为我们定义好了一个全局的Message池,这个池是一个链表型数据结构,通过obtain()方法可以从链表头取出一个Message对象。这两个小问题解决完了,继续看 sendMessageDelayed():
public final boolean sendMessageDelayed(Message msg, long delayMillis){
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
可以看到,对消息的时间做了一下修正,然后传给了sendMessageAtTime(),这里为时间加上了一个SystemClock.uptimeMillis(),也就是从这里开始,采用了系统的准确时刻而不是之前的延时多久。接下来看sendMessageAtTime():
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
在这里首先获取了Handler中的MessageQueue对象,若不为空,说明一切正常,接下来就要将这个Message插入到MessageQueue中。
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}
这里将这个message的目标(target)指向了该handler自己(this),然后调用MessageQueue的enqueueMessage()方法进行了消息的插入操作。
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
如果熟悉数据结构的话,可以很清楚的看到,这个所谓的消息队列MessageQueue是一个链表,将消息插入消息队列就是一个简单的对链表进行插入的过程。首先会对链表头指针做判断,如果为空,那么就把当前消息插入到链表头部,如果链表不为空,那么比较一下当前消息的执行时间,若时间小于头指针所存储的消息,那么也要将他插入到链表头部。若以上条件都不满足,那么就要对链表进行一个遍历,找到适当的位置并插入。
3.取出消息:Looper
Looper负责取出消息然后把消息交给目标handler处理。那么他是怎么工作的呢,来看看他的源码:首先,Looper的入口是prepare()方法:
public static void prepare() {
prepare(true);
}
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
调用prepare()方法,会new 一个Looper对象把他传给sThreadLocal.set()方法,那么先来看看这个方法是何用:
/**
* Sets the current thread's copy of this thread-local variable
* to the specified value. Most subclasses will have no need to
* override this method, relying solely on the {@link #initialValue}
* method to set the values of thread-locals.
*
* @param value the value to be stored in the current thread's copy of
* this thread-local.
*/
public void set(T value) {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
createMap(t, value);
}
他将一个数据保存在了当前线程中。那么刚才就是将一个Looper对象保存在了调用方法的当前线程中。再来看看Looper的构造方法:
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}
还记得默认是给构造方法传了一个值为true的boolean。在这个构造方法中,先创建了一个消息队列,保存起来,然后又获取了当前线程,并保存起来。综合一下,就是在创建Looper的时候将当前线程、一个消息队列和该Looper对象关联起来了。创建好了Looper,接下来就是开启了。开启方法是loop():
**
* Run the message queue in this thread. Be sure to call
* {@link #quit()} to end the loop.
*/
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
final Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
final long traceTag = me.mTraceTag;
if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
}
try {
msg.target.dispatchMessage(msg);
} finally {
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycleUnchecked();
}
}
代码太长,我只看关键部分:
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
首先通过myLooer()从当前线程中获取到了刚刚保存起来的Looper对象,然后检查是否为空。如果为空,直接抛出异常。因此,我们要想使用Looper,就要先调用prepare()方法创建一个Looper对象保存在当前线程,然后才能在loop()方法中获取到。之后进入了一个死循环中:
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
//......
try {
msg.target.dispatchMessage(msg);
} finally {
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
//......
msg.recycleUnchecked();
}
在这个循环中,会不断的从queue中获取msg,然后调用msg的target的dispatchMessage()方法,queue通过名字可以看出来是一个队列,即消息队列,暂不深究。这里有一个问题,msg的target是什么?dispatchMessage()做了什么?
/*package*/ Handler target;
跟踪进来可以看到,target其实就是一个Handler对象,那么dispatchMessage()也即Handler的方法了:
/**
* Handle system messages here.
*/
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
首先,若msg的callback不为空就调用handleCallback()方法:
private static void handleCallback(Message message) {
message.callback.run();
}
否则,先判断自己的callback若不为空,则将msg传给mCallback的handleMessage():
public interface Callback {
public boolean handleMessage(Message msg);
}
最后实在不行才回去调用自己的handleMessage方法:
/**
* Subclasses must implement this to receive messages.
*/
public void handleMessage(Message msg) {
}
这个方法是要自己覆盖的(不然一个空方法调用个锤子)。那么现在很请除了,每一条消息关联了自己的Handler对象,然后把自己交给他去处理。还记得前面发送消息时有一行代码是Handler将target指向了自己吗?对,就是在那里进行了关联。一切都分析完了(好像很简单的样子?),总结一下:
- Message是消息对象,表示要具体做些什么
- 创建Message对象建议用obtain()方法,这样是从一个消息池中不断的取出消息来使用,避免过多的内存分配
- Handler首先通过sendMessage()方法把消息发送出去
- Handler发送消息最终会由MessageQueue进行一个入队的操作(消息队列即链表),与此同时会将该消息的target指向该Handler,Handler和Message的联系就在这里建立起来
- Looper负责不断的从消息队列中取出消息来处理
- 使用Looper首先要调用prepare()方法将创建的Looper对象保存在当前线程中,之后才能通过Loop()方法取出,Looper和线程、消息队列的联系在这里建立
- 对于消息的处理,还是要交给Handler来做,即取出消息的target所指向的Handler,交给他处理
- 主线程即UI线程在一开始创建时就已经创建并开启了Looper,所以我们在主线程中使用Handler时就已经和主线程、消息队列有了联系,就不用再手动调用loop()了
网友评论