美文网首页
数据可视化利器 Bokeh Tutorial

数据可视化利器 Bokeh Tutorial

作者: 小树枝来了 | 来源:发表于2018-04-18 14:45 被阅读0次
    1531784027757500d99eead.jpg

    数据可视化利器 Bokeh Tutorial

    @(数据科学)[小树枝来了, 帮助, Markdown, 数据分析]

    Tutorial Overview

    The tutorial is broken into several sections, which are each presented in their own notebook:

    https://bokeh.pydata.org/en/latest/docs/user_guide/quickstart.html#userguide-quickstart
    在线jupyter演示:
    https://hub.mybinder.org/user/bokeh-bokeh-notebooks-hlweyrv2/notebooks/tutorial/00%20-%20Introduction%20and%20Setup.ipynb
    GitHub:
    https://github.com/bokeh/bokeh

    What is Bokeh

    Bokeh is an interactive visualization library that targets modern web browsers for presentation. It is good for:

    • Interactive visualization in modern browsers
    • Standalone HTML documents, or server-backed apps
    • Expressive and versatile graphics
    • Large, dynamic or streaming data
    • Easy usage from python (or Scala, or R, or...)

    And most importantly:

    NO JAVASCRIPT REQUIRED

    The goal of Bokeh is to provide elegant, concise construction of novel graphics in the style of D3.js, from the comfort of high level languages such as Python, and to extend this capability with high-performance interactivity over very large or streaming datasets. Bokeh can help anyone who would like to quickly and easily create interactive plots, dashboards, and data applications.

    示例

    # Standard imports 
    from bokeh.io import output_notebook, show
    output_notebook()
    
    # Plot a complex chart with intearctive hover in a few lines of code
    
    from bokeh.models import ColumnDataSource, HoverTool
    from bokeh.plotting import figure
    from bokeh.sampledata.autompg import autompg_clean as df
    from bokeh.transform import factor_cmap
    
    df.cyl = df.cyl.astype(str)
    df.yr = df.yr.astype(str)
    
    group = df.groupby(('cyl', 'mfr'))
    source = ColumnDataSource(group)
    
    p = figure(plot_width=800, plot_height=300, title="Mean MPG by # Cylinders and Manufacturer",
               x_range=group, toolbar_location=None, tools="")
    
    p.xgrid.grid_line_color = None
    p.xaxis.axis_label = "Manufacturer grouped by # Cylinders"
    p.xaxis.major_label_orientation = 1.2
    
    index_cmap = factor_cmap('cyl_mfr', palette=['#2b83ba', '#abdda4', '#ffffbf', '#fdae61', '#d7191c'], 
                             factors=sorted(df.cyl.unique()), end=1)
    
    p.vbar(x='cyl_mfr', top='mpg_mean', width=1, source=source,
           line_color="white", fill_color=index_cmap, 
           hover_line_color="black", hover_fill_color=index_cmap)
    
    p.add_tools(HoverTool(tooltips=[("MPG", "@mpg_mean"), ("Cyl, Mfr", "@cyl_mfr")]))
    
    show(p)
    

    相关文章

      网友评论

          本文标题:数据可视化利器 Bokeh Tutorial

          本文链接:https://www.haomeiwen.com/subject/dobvkftx.html