美文网首页数学分析
数学分析理论基础16:求导法则

数学分析理论基础16:求导法则

作者: 溺于恐 | 来源:发表于2019-01-25 10:16 被阅读38次

    求导法则

    导数的四则运算

    定理:若函数u(x),v(x)在点x_0可导,则函数f(x)=u(x)\pm v(x)x_0也可导,且f'(x_0)=u'(x_0)\pm v'(x_0)

    证明:

    f'(x_0)=\lim\limits_{\Delta x\to 0}{[u(x_0+\Delta x)\pm v(x_0+\Delta x)]-[u(x_0)\pm v(x_0)]\over \Delta x}

    =\lim\limits_{\Delta x\to 0}{u(x_0+\Delta x)-u(x_0)\over \Delta x}\pm \lim\limits_{\Delta x\to 0}{v(x_0+\Delta x)-v(x_0)\over \Delta x}

    =u'(x_0)\pm v'(x_0)\qquad\mathcal{Q.E.D}

    定理:若函数u(x),v(x)在点x_0可导,则函数f(x)=u(x)v(x)在点x_0也可导,且f'(x_0)=u'(x_0)v(x_0)+u(x_0)v'(x_0)

    证明:

    f'(x_0)=\lim\limits_{\Delta x\to 0}{u(x_0+\Delta x)v(x_0+\Delta x)-u(x_0)v(x_0)\over \Delta x}

    =\lim\limits_{\Delta x\to 0}{u(x_0+\Delta x)v(x_0+\Delta x)-u(x_0)v(x_0+\Delta x)+u(x_0)v(x_0+\Delta x)-u(x_0)v(x_0)\over \Delta x}

    =\lim\limits_{\Delta x\to 0}{u(x_0+\Delta x)-u(x_0)\over \Delta x}v(x_0+\Delta x)+\lim\limits_{\Delta x\to 0}u(x_0){v(x_0+\Delta x)-v(x_0)\over \Delta x}
    =u'(x_0)v(x_0)+u(x_0)v'(x_0)\qquad\mathcal{Q.E.D}

    注:利用数学归纳法可推广到任意有限个函数乘积

    例:(uvw)'=u'vw+uv'w+uvw'

    推论:若函数v(x)在点x_0可导,c为常数,则(cv(x))'_{x=x_0}=cv'(x_0)

    定理:若函数u(x),v(x)在点x_0可导,且v(x_0)\neq 0,则f(x)={u(x)\over v(x)}在点x_0也可导,且f'(x_0)={u'(x_0)v(x_0)-u(x_0)v'(x_0)\over [v(x_0)]^2}

    证明:

    设f(x)=u(x)g(x),其中g(x)={1\over v(x)}

    下证g(x)在点x_0可导

    {g(x_0+\Delta x)-g(x_0)\over \Delta x}={{1\over v(x_0+\Delta x)}-{1\over v(x_0)}\over \Delta x}

    =-{v(x_0+\Delta x)-v(x_0)\over \Delta x}\cdot {1\over v(x_0+\Delta x)v(x_0)}

    \because v(x)在点x_0可导

    \therefore v(x)在点x_0连续

    又v(x_0)\neq 0

    \therefore ({1\over v(x)})'_{x=x_0}=g'(x_0)

    =\lim\limits_{\Delta x\to 0}{g(x_0+\Delta x)-g(x_0)\over \Delta x}=-{v'(x_0)\over [v(x_0)]^2}

    \therefore f'(x_0)=({u(x)\over v(x)})'_{x=x_0}

    =u'(x_0){1\over v(x_0)}+u(x_0)(-{v'(x_0)\over [v(x_0)]^2})

    ={u'(x_0)v(x_0)-u(x_0)v'(x_0)\over [v(x_0)]^2}\qquad\mathcal{Q.E.D}

    反函数的导数

    定理:设y=f(x)x=\varphi(y)的反函数,若\varphi(y)U(y_0)上连续且严格单调,且\varphi(y_0)\neq 0,则f(x)在点x_0(x_0=\varphi(y_0))可导,且f'(x_0)={1\over \varphi'(x_0)}

    证明:

    设\Delta x=\varphi(y_0+\Delta y)-\varphi(y_0),\Delta y=f(x_0+\Delta x)-f(x_0)

    \because \varphi 在U(y_0)内连续且严格单调

    \therefore f=\varphi^{-1}在U(x_0)连续且严格单调

    \therefore \Delta y=0\Leftrightarrow \Delta x=0

    且\Delta y\to 0\Leftrightarrow \Delta x\to 0

    由\varphi'(y_0)\neq 0

    f'(x_0)=\lim\limits_{\Delta x\to 0}{\Delta y\over \Delta x}=\lim\limits_{\Delta y\to 0}{\Delta y\over \Delta x}

    ={1\over \lim\limits_{\Delta y\to 0}{\Delta x\over \Delta y}}={1\over \varphi'(y_0)}\qquad\mathcal{Q.E.D}

    例:证明(a^x)'=a^xlna(a\gt 0,a\neq 1)

    证:

    (a^x)'={1\over (log_ay)'}

    ={y\over log_ae}=a^xlna

    例:证明(arcsinx)'={1\over \sqrt{1-x^2}}

    证:

    由y=arcsinx,x\in(-1,1)是x=siny,y\in (-{\pi\over 2},{\pi\over 2})的反函数

    (arcsinx)'={1\over (siny)'}

    ={1\over cosy}={1\over \sqrt{1-sin^2y}}

    ={1\over \sqrt{1-x^2}},x\in (-1,1)

    例:证明(arctanx)'={1\over 1+x^2}

    证:

    由y=arctanx,x\in R是x=tany,y\in (-{\pi\over 2},{\pi\over 2})的反函数

    (arctanx)'={1\over (tany)'}
    ={1\over sec^2y}={1\over 1+tan^2y}

    ={1\over 1+x^2},x\in R

    复合函数的导数

    引理:f(x)在点x_0可导\LeftrightarrowU(x_0)上存在一个在点x_0连续的函数H(x),使f(x)-f(x_0)=H(x)(x-x_0),f'(x_0)=H(x_0)

    证明:

    必要性

    设f(x)在点x_0可导

    令H(x)=\begin{cases}{f(x)-f(x_0)\over x-x_0}\qquad x\in U^\circ (x_0)\\ f'(x_0)\qquad x=x_0\end{cases}

    则\lim\limits_{x\to x_0}H(x)=\lim\limits_{x\to x_0}{f(x)-f(x_0)\over x-x_0}=f'(x_0)=H(x_0)

    \therefore H(x)在点x_0连续

    且f(x)-f(x_0)=H(x)(x-x_0),x\in U(x_0)

    充分性

    \exists H(x),x\in U(x_0)在点x_0连续

    且f(x)-f(x_0)=H(x)(x-x_0),x\in U(x_0)

    \because \lim\limits_{x\to x_0}{f(x)-f(x_0)\over x-x_0}=\lim\limits_{x\to x_0}H(x)=H(x_0)

    \therefore f(x)在点x_0可导,且f'(x_0)=H(x_0)\qquad\mathcal{Q.E.D}

    注:引理说明点x_0是函数g(x)={f(x)-f(x_0)\over x-x_0}可去间断点的充要条件为f(x)在点x_0可导

    定理:设u=\varphi(x)在点x_0可导,y=f(u)在点u_0=\varphi(x_0)可导,则复合函数f\circ \varphi在点x_0可导,且(f\circ \varphi)'(x_0)=f'(u_0)\varphi'(x_0)=f'(\varphi(x_0))\varphi'(x_0)

    证明:

    \because f(u)在u_0可导

    \therefore 存在一个在点u_0连续的函数F(u)使得

    f'(u_0)=F(u_0)

    且f(u)-f(u_0)=F(u)(u-u_0),u\in U(u_0)

    又u=\varphi(x)在点x_0可导

    \therefore 存在一个在点x_0连续的函数\phi(x)使得

    \varphi'(x_0)=\phi(x_0)

    且\varphi(x)-\varphi(x_0)=\phi(x)(x-x_0),x\in U(x_0)

    \therefore f(\varphi(x))-f(\varphi(x_0))=F(\varphi(x))(\varphi(x)-\varphi(x_0))

    =F(\varphi(x))\phi(x)(x-x_0)

    \because \varphi,\phi在点x_0连续,F在点u_0=\varphi(x_0)连续

    \therefore H(x)=F(\varphi(x))\phi(x)在点x_0连续

    \therefore f\circ \varphi在点x_0可导

    且(f\circ \varphi)'(x_0)=H(x_0)=F(\varphi(x_0))\phi(x_0)=f'(u_0)\varphi(x_0)\qquad\mathcal{Q.E.D}

    注:

    1.求导公式称为链式法则

    2.区别f'(\varphi(x))=f'(u)|_{u=\varphi(x)}(f(\varphi(x)))'=f'(\varphi(x))\varphi'(x)

    例(对数求导法):设y={(x+5)^2(x-4)^{1\over 3}\over (x+2)^5(x+4)^{1\over 2}},求y'

    解:

    两边取对数可得

    lny=ln{(x+5)^2(x-4)^{1\over 3}\over (x+2)^5(x+4)^{1\over 2}}

    =2ln(x+5)+{1\over 3}ln(x-4)-5ln(x+2)-{1\over 2}ln(x+4)

    两边对x求导可得

    {y'\over y}={2\over x+5}+{1\over 3(x-4)}-{5\over x+2}-{1\over 2(x+4)}

    \therefore y'={(x+5)^2(x-4)^{1\over 3}\over (x+2)^5(x+4)^{1\over 2}}[{2\over x+5}+{1\over 3(x-4)}-{5\over x+2}-{1\over 2(x+4)}]

    基本求导法则与公式

    基本求导法则

    1.(u\pm v)'=u'\pm v'

    2.(uv)'=u'v+uv',(cu)'=cu'(c为常数)

    3.({u\over v})'={u'v-uv'\over v^2},({1\over v})'=-{v'\over v^2}

    4.反函数导数{dy\over dx}={1\over {dx\over dy}}

    5.复合函数导数{dy\over dx}={dy\over du}\cdot {du\over dx}

    基本初等函数导数公式

    1.(c)'=0(c为常数)

    2.(x^\alpha)'=\alpha x^{\alpha-1}(\alpha 为任意实数)

    3.(sinx)'=cosx,(cosx)'=-sinx,(tanx)'=sec^2x

    (cotx)'=-csc^2x,(secx)'=secxtanx,(cscx)'=-cscxcotx

    4.(arcsinx)'={1\over \sqrt{1-x^2}},(arccosx)'=-{1\over \sqrt{1-x^2}}

    (arctanx)'={1\over 1+x^2},(arccotx)'=-{1\over 1+x^2}

    5.(a^x)'=a^xlna,(e^x)'=e^x

    6.(log_ax)'={1\over xlna},(lnx)'={1\over x}

    相关文章

      网友评论

        本文标题:数学分析理论基础16:求导法则

        本文链接:https://www.haomeiwen.com/subject/dotwlqtx.html