美文网首页OpenCvOpenCV机器视觉
OpenCV 匹配兴趣点:SIFT、SURF 和二值描述子

OpenCV 匹配兴趣点:SIFT、SURF 和二值描述子

作者: 饮茶先啦靓仔 | 来源:发表于2018-10-05 20:46 被阅读16次

    上一篇文章中讲到如何检测图像中的兴趣点,以便后续的局部图像分析。为了进行基于兴趣点的图像分析,我们需要构建多种表征方式,精确地描述每个关键点。这些描述子通常是二值类型、整数型或浮点数型组成的向量。好的描述子要具有足够的独特性和鲁棒性,能唯一地表示图像中的每个特征点,并且在亮度和视角变化时仍能提取出同一批点集。此外,尽量能够简洁,以减少计算资源的占用。

    SIFT算法提出者 David Lowe

    1.Harris、FAST

    这两个特征检测算子不具有尺度不变等特性,所以使用这两个算子进行检测并匹配的效果一般不会很好。常见的方案是通过比较特征点附近的一个方块的像素集合的相似度,算法使用差的平方和(SSD),效果如下,这里不进行代码演示。可以看到,即使在视角差别不大的情况下,就已经有非常多的错误匹配项。

    FAST & SSD

    2.SIFT、SURF

    so,尺度不变检测算子的优势就体现出来了。SIFT、SURF在检测出特征点之后,可以生成相应的描述子(Descriptor)。这些描述子具有的信息量比单纯地比较像素块的SSD多得多,于是能够更好地进行图像的匹配。至于描述子的数据结构,上一篇文章中提到过,这里不再赘述。其中SIFT是128维的向量,SURF则是检测Haar小波特征。

    SIFT SURF

    直接进行匹配的话,也会有很多的错误匹配项,比上面那两位好不到哪里去。那么,算法研究员们想出了一些匹配策略,能够在一定程度上减少错误项。主要有:

    • 交叉检查匹配项

    交叉检查是指在第一幅图像匹配到第二幅图像后,再用第二幅图像的关键点再逐个跟第一幅的图像进行比较,只有在两个方向都匹配了同一个关键点时,才认为是一个有效的匹配项。

    • 比率检测法

    我们为每个关键点找到两个最佳的匹配项,方法是使用kNN最近邻(可以看我的这篇文章,其实在这里只是用了欧氏距离)。接下来计算排名第二的匹配项与排名第一的匹配项的差值之比(如果两个匹配项近乎相等,则结果接近为1)。比率过高的匹配项作为模糊匹配项,从结果中被排除。

    • 匹配差值的阈值化

    很简单,就是将差值过大的匹配项排除掉。

    上面的一些匹配策略可以结合使用来提升匹配效果。代码实现如下

    /******************************************************
     * Created by 杨帮杰 on 10/5/18
     * Right to use this code in any way you want without
     * warranty, support or any guarantee of it working
     * E-mail: yangbangjie1998@qq.com
     * Association: SCAU 华南农业大学
     ******************************************************/
    
    #include <iostream>
    #include <vector>
    #include <opencv2/core.hpp>
    #include <opencv2/imgproc.hpp>
    #include <opencv2/highgui.hpp>
    #include <opencv2/features2d.hpp>
    #include <opencv2/objdetect.hpp>
    #include <opencv2/xfeatures2d.hpp>
    
    #define IMAGE1_PATH "/home/jacob/下载/church01.jpg"
    #define IMAGE2_PATH "/home/jacob/下载/church02.jpg"
    #define IMAGE3_PATH "/home/jacob/下载/church03.jpg"
    
    using namespace cv;
    using namespace std;
    
    int main()
    {
    
        /*******************SIFT、SURF:描述并匹配局部强度值模式***********************/
    
        Mat image1= imread(IMAGE1_PATH,IMREAD_GRAYSCALE);
        Mat image2= imread(IMAGE2_PATH,IMREAD_GRAYSCALE);
    
        vector<KeyPoint> keypoints1;
        vector<KeyPoint> keypoints2;
    
        //创建SURF特征检测器
        Ptr<Feature2D> ptrFeature2D = xfeatures2d::SURF::create(2000.0);
        //创建SIFT特征检测器
        //Ptr<Feature2D> ptrFeature2D = xfeatures2d::SIFT::create(74);
    
        //检测特征点
        ptrFeature2D->detect(image1,keypoints1);
        ptrFeature2D->detect(image2,keypoints2);
    
        Mat featureImage;
        drawKeypoints(image1,keypoints1,featureImage,
                      Scalar(255,255,255),DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
    
        imshow("SURF",featureImage);
    
        cout << "Number of SURF keypoints (image 1): " << keypoints1.size() << endl;
        cout << "Number of SURF keypoints (image 2): " << keypoints2.size() << endl;
    
        //提取特征描述子
        Mat descriptors1;
        Mat descriptors2;
        ptrFeature2D->compute(image1,keypoints1,descriptors1);
        ptrFeature2D->compute(image2,keypoints2,descriptors2);
    
        //使用L2范式(欧氏距离)进行配对
        BFMatcher matcher(NORM_L2);
        //进行交叉匹配
        //BFMatcher matcher(NORM_L2, true);
    
        vector<DMatch> matches;
        matcher.match(descriptors1,descriptors2, matches);
    
        Mat imageMatches;
        drawMatches(
        image1, keypoints1, // 1st image and its keypoints
        image2, keypoints2, // 2nd image and its keypoints
        matches,            // the matches
        imageMatches,       // the image produced
        Scalar(255, 255, 255),  // color of lines
        Scalar(255, 255, 255),  // color of points
        vector< char >(),      // masks if any
        DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS | DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
    
        imshow("SURF Matches",imageMatches);
    
        cout << "Number of matches: " << matches.size() << endl;
    
        //使用比率检测法
        //为每个关键点找出两个最佳匹配项
        vector<vector<DMatch> > matches2;
        matcher.knnMatch(descriptors1, descriptors2,
                         matches2,
                         2); // find the k (2) best matches
        matches.clear();
    
        //比率设定为0.6
        double ratioMax= 0.6;
        vector<vector<DMatch> >::iterator it;
        for (it= matches2.begin(); it!= matches2.end(); ++it) {
            //   first best match/second best match
            if ((*it)[0].distance/(*it)[1].distance < ratioMax) {
                matches.push_back((*it)[0]);
            }
        }
    
         drawMatches(
         image1,keypoints1, // 1st image and its keypoints
         image2,keypoints2, // 2nd image and its keypoints
         matches,           // the matches
         imageMatches,      // the image produced
         Scalar(255,255,255),  // color of lines
         Scalar(255,255,255),  // color of points
         vector< char >(),    // masks if any
         DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS | DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
    
        cout << "Number of matches (after ratio test): " << matches.size() << endl;
    
        imshow("SURF Matches (ratio test at 0.6)",imageMatches);
    
        //差值阈值化匹配,这里设为0.3
        float maxDist = 0.3;
        matches2.clear();
        matcher.radiusMatch(descriptors1, descriptors2, matches2,
                            maxDist); // maximum acceptable distance
    
        drawMatches(
        image1, keypoints1, // 1st image and its keypoints
        image2, keypoints2, // 2nd image and its keypoints
        matches2,          // the matches
        imageMatches,      // the image produced
        Scalar(255, 255, 255),  // color of lines
        Scalar(255, 255, 255),  // color of points
        vector<vector< char >>(),    // masks if any
        DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS | DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
    
        int nmatches = 0;
        for (int i = 0; i< matches2.size(); i++)
            nmatches += matches2[i].size();
    
        cout << "Number of matches (with max radius): " << nmatches << endl;
    
        imshow("SURF Matches (with max radius)", imageMatches);
    
        /****************************尺度无关的匹配**************************************/
    
        image1= imread(IMAGE1_PATH,CV_LOAD_IMAGE_GRAYSCALE);
        image2= imread(IMAGE3_PATH,CV_LOAD_IMAGE_GRAYSCALE);
    
        cout << "Number of SIFT keypoints (image 1): " << keypoints1.size() << endl;
        cout << "Number of SIFT keypoints (image 2): " << keypoints2.size() << endl;
    
        ptrFeature2D = xfeatures2d::SIFT::create();
        ptrFeature2D->detectAndCompute(image1, noArray(), keypoints1, descriptors1);
        ptrFeature2D->detectAndCompute(image2, noArray(), keypoints2, descriptors2);
    
        matcher.match(descriptors1,descriptors2, matches);
    
        //选取最好的50个
        nth_element(matches.begin(),matches.begin()+50,matches.end());
        matches.erase(matches.begin()+50,matches.end());
    
        drawMatches(
        image1, keypoints1, // 1st image and its keypoints
        image2, keypoints2, // 2nd image and its keypoints
        matches,            // the matches
        imageMatches,      // the image produced
        Scalar(255, 255, 255),  // color of lines
        Scalar(255, 255, 255), // color of points
        vector<char>(), cv::DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS| cv::DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
    
        imshow("Multi-scale SIFT Matches",imageMatches);
    
        cout << "Number of matches: " << matches.size() << endl;
    
        waitKey();
        return 0;
    }
    

    结果如下


    SURF和不同尺度下的SIFT匹配
    SURF的比率检测和阈值化

    3.ORB、BRISK

    SIFT和SURF的描述子向量分别是浮点型的128位和64位,对他们操作耗资巨大,为了减少计算资源的使用,算法研究员们又引入了二值描述子的概念。其中ORB和BRISK生成的就是二值描述子。

    其中,ORB实际上是在BRIEF描述子基础上构建的。实现过程是在关键点周围的邻域内随机选取一对像素点,从而创建一个二值描述子。比较这两个像素点的强度值,如果第一个点的强度值较大,就把对应描述子的位(bit)设为1,否则为0。对一批随机像素点进行上述处理,就产生了一个由若干位组成的描述子,通常在128到512位。对于ORB,为了解决旋转不变性,对256个随机点对进行旋转后进行判别。

    ORB

    二值描述子之间的比较一般使用Hamming Distance(汉明距离),表示的是两个等长子串或者二进制数之间不同位的个数,如

    # 举例说明以下字符串间的汉明距离为:
    "karolin" and "kathrin" is 3.
    "karolin" and "kerstin" is 3.
    1011101 and 1001001 is 2.
    2173896 and 2233796 is 3.
    

    代码实现如下

    /******************************************************
     * Created by 杨帮杰 on 10/5/18
     * Right to use this code in any way you want without
     * warranty, support or any guarantee of it working
     * E-mail: yangbangjie1998@qq.com
     * Association: SCAU 华南农业大学
     ******************************************************/
    
    #include <iostream>
    #include <vector>
    #include <opencv2/core.hpp>
    #include <opencv2/imgproc.hpp>
    #include <opencv2/highgui.hpp>
    #include <opencv2/features2d.hpp>
    #include <opencv2/objdetect.hpp>
    #include <opencv2/xfeatures2d.hpp>
    
    #define IMAGE1_PATH "/home/jacob/下载/church01.jpg"
    #define IMAGE2_PATH "/home/jacob/下载/church02.jpg"
    #define IMAGE3_PATH "/home/jacob/下载/church03.jpg"
    
    using namespace cv;
    using namespace std;
    
    int main()
    {
    
        Mat image1= imread(IMAGE1_PATH,CV_LOAD_IMAGE_GRAYSCALE);
        Mat image2= imread(IMAGE2_PATH,CV_LOAD_IMAGE_GRAYSCALE);
    
        vector<KeyPoint> keypoints1;
        vector<KeyPoint> keypoints2;
        Mat descriptors1;
        Mat descriptors2;
    
        //构建ORB特征检测器
        //Ptr<Feature2D> feature =ORB::create(60);
        //构建BRISK特征检测器
        Ptr<Feature2D> feature = BRISK::create(80);
    
        feature->detectAndCompute(image1, noArray(), keypoints1, descriptors1);
        feature->detectAndCompute(image2, noArray(), keypoints2, descriptors2);
    
        Mat featureImage;
        drawKeypoints(image1,keypoints1,featureImage,
                      Scalar(255,255,255),DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
    
        imshow("ORB",featureImage);
    
        cout << "Number of ORB keypoints (image 1): " << keypoints1.size() << endl;
        cout << "Number of ORB keypoints (image 2): " << keypoints2.size() << endl;
    
        // 使用FREAK(快速视网膜关键点),配合BRISK
        // feature = xfeatures2d::FREAK::create();
        // feature->compute(image1, keypoints1, descriptors1);
        // feature->compute(image1, keypoints2, descriptors2);
    
        //二值描述子必须用Hamming规范
        BFMatcher matcher(NORM_HAMMING);
    
        vector<DMatch> matches;
        matcher.match(descriptors1,descriptors2, matches);
    
        Mat imageMatches;
        drawMatches(
        image1,keypoints1, // 1st image and its keypoints
        image2,keypoints2, // 2nd image and its keypoints
        matches,           // the matches
        imageMatches,      // the image produced
        Scalar(255,255,255),  // color of lines
        Scalar(255,255,255),  // color of points
        vector< char >(),    // masks if any
        DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS | DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
    
        imshow("ORB Matches", imageMatches);
        //imshow("BRISK Matches", imageMatches);
        //imshow("FREAK with BRISK Matches", imageMatches);
    
        cout << "Number of matches: " << matches.size() << endl;
    
        waitKey();
        return 0;
    }
    

    结果如下


    ORB Matches
    BRISK Matches

    References:
    OpenCV尺度不变特征检测:SIFT、SURF、BRISK、ORB
    Hamming Distance (汉明距离)
    【特征检测】ORB特征提取算法
    opencv计算机视觉编程攻略(第三版) —— Robert

    相关文章

      网友评论

        本文标题:OpenCV 匹配兴趣点:SIFT、SURF 和二值描述子

        本文链接:https://www.haomeiwen.com/subject/dqiqaftx.html