一、weak的作用
- 测试代码
#import "ViewController.h"
#import "RevanPerson.h"
@interface ViewController ()
@end
@implementation ViewController
- (void)viewDidLoad {
[super viewDidLoad];
}
- (void)touchesBegan:(NSSet<UITouch *> *)touches withEvent:(UIEvent *)event {
RevanPerson *personStrong;
__weak RevanPerson *personWeak;
__unsafe_unretained RevanPerson *personUnsafe;
NSLog(@"person作用域开始");
{
RevanPerson *person = [[RevanPerson alloc] init];
}
NSLog(@"person作用域之外");
}
@end
- 打印输出
2018-07-28 01:52:27.493232+0800 08-weak原理[53096:3349035] person作用域开始
2018-07-28 01:52:27.493488+0800 08-weak原理[53096:3349035] -[RevanPerson dealloc]
2018-07-28 01:52:27.494227+0800 08-weak原理[53096:3349035] person作用域之外
- 分析
- 因为person对象是一个局部变量,当一出作用域范围就会被释放,所以会发现[RevanPerson dealloc]输出在“person作用域之外”输出之前打印
使用personStrong引用
- 测试代码
#import "ViewController.h"
#import "RevanPerson.h"
@interface ViewController ()
@end
@implementation ViewController
- (void)viewDidLoad {
[super viewDidLoad];
}
- (void)touchesBegan:(NSSet<UITouch *> *)touches withEvent:(UIEvent *)event {
RevanPerson *personStrong;
__weak RevanPerson *personWeak;
__unsafe_unretained RevanPerson *personUnsafe;
NSLog(@"person作用域开始");
{
RevanPerson *person = [[RevanPerson alloc] init];
personStrong = person;
}
NSLog(@"person作用域之外--%@", personStrong);
}
@end
- 打印输出
2018-07-28 01:58:21.977346+0800 08-weak原理[53173:3353359] person作用域开始
2018-07-28 01:58:21.978652+0800 08-weak原理[53173:3353359] person作用域之外--<RevanPerson: 0x60400000def0>
2018-07-28 01:58:21.979809+0800 08-weak原理[53173:3353359] -[RevanPerson dealloc]
- 分析
- 从打印输出发现有了personStrong引用后RevanPerson不会一出作用域就释放
使用personWeak引用
- 测试代码
#import "ViewController.h"
#import "RevanPerson.h"
@interface ViewController ()
@end
@implementation ViewController
- (void)viewDidLoad {
[super viewDidLoad];
}
- (void)touchesBegan:(NSSet<UITouch *> *)touches withEvent:(UIEvent *)event {
RevanPerson *personStrong;
__weak RevanPerson *personWeak;
__unsafe_unretained RevanPerson *personUnsafe;
NSLog(@"person作用域开始");
{
RevanPerson *person = [[RevanPerson alloc] init];
personWeak = person;
}
NSLog(@"person作用域之外--%@", personWeak);
}
@end
- 打印输出
2018-07-28 02:01:54.585997+0800 08-weak原理[53218:3355992] person作用域开始
2018-07-28 02:01:54.586218+0800 08-weak原理[53218:3355992] -[RevanPerson dealloc]
2018-07-28 02:01:54.586402+0800 08-weak原理[53218:3355992] person作用域之外--(null)
- 分析
- 从打印输出可以看出,person对象一出作用域就被释放
- 使用__weak修饰符修饰的personWeak对象原本是指向person对象的,当person对象释放后,personWeak自动被赋值为nil
使用personUnsafe
- 测试代码
#import "ViewController.h"
#import "RevanPerson.h"
@interface ViewController ()
@end
@implementation ViewController
- (void)viewDidLoad {
[super viewDidLoad];
}
- (void)touchesBegan:(NSSet<UITouch *> *)touches withEvent:(UIEvent *)event {
RevanPerson *personStrong;
__weak RevanPerson *personWeak;
__unsafe_unretained RevanPerson *personUnsafe;
NSLog(@"person作用域开始");
{
RevanPerson *person = [[RevanPerson alloc] init];
personUnsafe = person;
}
NSLog(@"person作用域之外--%@", personUnsafe);
}
@end
- 打印输出
2018-07-28 02:06:07.796183+0800 08-weak原理[53264:3358785] person作用域开始
2018-07-28 02:06:07.796368+0800 08-weak原理[53264:3358785] -[RevanPerson dealloc]
崩溃Thread 1: EXC_BAD_ACCESS (code=EXC_I386_GPFLT)
- 分析
- person对象一出作用域就被释放
- 执行NSLog(@"person作用域之外--%@", personUnsafe);发生崩溃,这是因为使用野指针造成的崩溃
- 使用__unsafe_unretained修饰符修饰的personUnsafe对象,指向person对象,当person对象被释放时,personUnsafe对象并不会被自动赋值为nil
实例小结
- weak和unsafe_unretained都是弱引用
- weak和unsafe_unretained执行的对象被释放时,weak修饰的对象会自动被赋值为nil。unsafe_unretained修饰的对象并不会自动赋值为nil
- weak是安全的弱引用
- unsafe_unretained是不安全的弱引用
二、weak原理
- SideTable结构
struct SideTable {
spinlock_t slock;
RefcountMap refcnts;//存储引用计数的散列表
weak_table_t weak_table;//存储弱引用的列表
SideTable() {
memset(&weak_table, 0, sizeof(weak_table));
}
~SideTable() {
_objc_fatal("Do not delete SideTable.");
}
void lock() { slock.lock(); }
void unlock() { slock.unlock(); }
void forceReset() { slock.forceReset(); }
// Address-ordered lock discipline for a pair of side tables.
template<HaveOld, HaveNew>
static void lockTwo(SideTable *lock1, SideTable *lock2);
template<HaveOld, HaveNew>
static void unlockTwo(SideTable *lock1, SideTable *lock2);
}
- weak_table_t弱引用列表结构
/**
* The global weak references table. Stores object ids as keys,
* and weak_entry_t structs as their values.
*/
struct weak_table_t {
weak_entry_t *weak_entries;
size_t num_entries;
uintptr_t mask;
uintptr_t max_hash_displacement;
};
- weak_entry_t结构
struct weak_entry_t {
DisguisedPtr<objc_object> referent;
union {
struct {
weak_referrer_t *referrers;
uintptr_t out_of_line_ness : 2;
uintptr_t num_refs : PTR_MINUS_2;
uintptr_t mask;
uintptr_t max_hash_displacement;
};
struct {
// out_of_line_ness field is low bits of inline_referrers[1]
weak_referrer_t inline_referrers[WEAK_INLINE_COUNT];
};
};
bool out_of_line() {
return (out_of_line_ness == REFERRERS_OUT_OF_LINE);
}
weak_entry_t& operator=(const weak_entry_t& other) {
memcpy(this, &other, sizeof(other));
return *this;
}
weak_entry_t(objc_object *newReferent, objc_object **newReferrer)
: referent(newReferent)
{
inline_referrers[0] = newReferrer;
for (int i = 1; i < WEAK_INLINE_COUNT; i++) {
inline_referrers[i] = nil;
}
}
}
weak注册
runtime会调用objc_initWeak函数,初始化一个新的 weak指针指向对象的地址。objc_initWeak函数会调用objc_storeWeak函数,objc_storeWeak函数的作用是更新指针指向,创建对应的弱引用表
- 1、objc_initWeak
id
objc_initWeak(id *location, id newObj)
{
if (!newObj) {
*location = nil;
return nil;
}
return storeWeak<DontHaveOld, DoHaveNew, DoCrashIfDeallocating>
(location, (objc_object*)newObj);
}
- 2、storeWeak
template <HaveOld haveOld, HaveNew haveNew,
CrashIfDeallocating crashIfDeallocating>
static id
storeWeak(id *location, objc_object *newObj)
{
assert(haveOld || haveNew);
if (!haveNew) assert(newObj == nil);
Class previouslyInitializedClass = nil;
id oldObj;
SideTable *oldTable;
SideTable *newTable;
// Acquire locks for old and new values.
// Order by lock address to prevent lock ordering problems.
// Retry if the old value changes underneath us.
retry:
if (haveOld) {//如果已经有了weak列表
oldObj = *location;
oldTable = &SideTables()[oldObj];
} else {
oldTable = nil;
}
if (haveNew) {//通过传入obj创建一个weak列表
newTable = &SideTables()[newObj];
} else {
newTable = nil;
}
SideTable::lockTwo<haveOld, haveNew>(oldTable, newTable);
if (haveOld && *location != oldObj) {
SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
goto retry;
}
// Prevent a deadlock between the weak reference machinery
// and the +initialize machinery by ensuring that no
// weakly-referenced object has an un-+initialized isa.
if (haveNew && newObj) {
//获取对象的isa指针
Class cls = newObj->getIsa();
//cls没有初始化
if (cls != previouslyInitializedClass &&
!((objc_class *)cls)->isInitialized())
{
SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
//初始化
_class_initialize(_class_getNonMetaClass(cls, (id)newObj));
// If this class is finished with +initialize then we're good.
// If this class is still running +initialize on this thread
// (i.e. +initialize called storeWeak on an instance of itself)
// then we may proceed but it will appear initializing and
// not yet initialized to the check above.
// Instead set previouslyInitializedClass to recognize it on retry.
previouslyInitializedClass = cls;
goto retry;
}
}
// Clean up old value, if any.
if (haveOld) {
//解除绑定
weak_unregister_no_lock(&oldTable->weak_table, oldObj, location);
}
// Assign new value, if any.
if (haveNew) {
newObj = (objc_object *)
//注册绑定
weak_register_no_lock(&newTable->weak_table, (id)newObj, location,
crashIfDeallocating);
// weak_register_no_lock returns nil if weak store should be rejected
// Set is-weakly-referenced bit in refcount table.
if (newObj && !newObj->isTaggedPointer()) {
newObj->setWeaklyReferenced_nolock();
}
// Do not set *location anywhere else. That would introduce a race.
*location = (id)newObj;
}
else {
// No new value. The storage is not changed.
}
SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
return (id)newObj;
}
weak销毁
当一个对象的引用计数为0时,会自动调用dealloc,接下来会执行
-
dealloc
-
_objc_rootDealloc
-
rootDealloc()
-
object_dispose
-
objc_destructInstance
-
clearDeallocating()
-
clearDeallocating_slow
-
weak_clear_no_lock
-
1、当一个对象的引用计数为0时,会自动调用dealloc
- (void)dealloc {
_objc_rootDealloc(self);
}
- 2、_objc_rootDealloc
void _objc_rootDealloc(id obj)
{
assert(obj);
obj->rootDealloc();
}
- 3、rootDealloc()会判断是否是TaggePointer类型,如果是直接返回;再判断isa指针是否是优化过的,这个对象是否有弱指针引用、是否有关联属性、是否有C++的析构函数、是否引用计数存储在SideTable中。如果满足上面的一个条件,那么就进入object_dispose函数,否则直接释放
inline void
objc_object::rootDealloc()
{
if (isTaggedPointer()) return; // fixme necessary?
/*
判断isa指针
nonpointer:是否是优化过的
weakly_referenced:是否有被弱引用指向过,如果没有,释放时会更快
has_assoc:是否有设置过关联对象,如果没有,释放时会更快
has_cxx_dtor:是否有C++的析构函数(.cxx_destruct),如果没有,释放的更快
has_sidetable_rc:引用计数器是否过大无法存储在isa中,如果为1,那么引用计数会存储在一个叫SideTable的类的属性中
*/
if (fastpath(isa.nonpointer &&
!isa.weakly_referenced &&
!isa.has_assoc &&
!isa.has_cxx_dtor &&
!isa.has_sidetable_rc))
{
assert(!sidetable_present());
free(this);//直接释放
}
else {
object_dispose((id)this);
}
}
- 4、object_dispose进行释放obj,但是在释放obj之前调用objc_destructInstance方法
id
object_dispose(id obj)
{
if (!obj) return nil;
objc_destructInstance(obj);
free(obj);//释放
return nil;
}
- 5、objc_destructInstance函数中销毁C++析构函数、移除管理属性
/***********************************************************************
* objc_destructInstance
* Destroys an instance without freeing memory.
* Calls C++ destructors.
* Calls ARC ivar cleanup.
* Removes associative references.
* Returns `obj`. Does nothing if `obj` is nil.
**********************************************************************/
void *objc_destructInstance(id obj)
{
if (obj) {
// Read all of the flags at once for performance.
bool cxx = obj->hasCxxDtor();
bool assoc = obj->hasAssociatedObjects();
// This order is important.
if (cxx) object_cxxDestruct(obj);//销毁
if (assoc) _object_remove_assocations(obj);//移除关联对象
obj->clearDeallocating();
}
return obj;
}
- 6、clearDeallocating函数,如果isa指针没有进行优化过直接调用sidetable_clearDeallocating函数,否则调用clearDeallocating_slow函数
inline void
objc_object::clearDeallocating()
{
//没有优化的isa指针
if (slowpath(!isa.nonpointer)) {
// Slow path for raw pointer isa.
sidetable_clearDeallocating();
}
else if (slowpath(isa.weakly_referenced || isa.has_sidetable_rc)) {
// Slow path for non-pointer isa with weak refs and/or side table data.
clearDeallocating_slow();
}
assert(!sidetable_present());
}
- 7、clearDeallocating_slow中判断如果有弱引用,调用weak_clear_no_lock函数清除弱引用;如果有引用计数,也清空引用计数
NEVER_INLINE void
objc_object::clearDeallocating_slow()
{
assert(isa.nonpointer && (isa.weakly_referenced || isa.has_sidetable_rc));
SideTable& table = SideTables()[this];
table.lock();
if (isa.weakly_referenced) {//isa中有弱引用
//清除弱引用:weak弱引用表、对象本身
weak_clear_no_lock(&table.weak_table, (id)this);
}
if (isa.has_sidetable_rc) {//isa引用计数
table.refcnts.erase(this);
}
table.unlock();
}
- 8、weak_clear_no_lock函数中,通过对象本身和runtime维护的weak弱引用表找到本对象的weak弱引用表,然后遍历这个对象的weak弱引用表把里面的弱引用对象一一赋值为nil,最后 把本对象的weak弱引用表从runtime维护的weak弱引用表中移除
/**
* Called by dealloc; nils out all weak pointers that point to the
* provided object so that they can no longer be used.
*
* @param weak_table
* @param referent The object being deallocated.
*/
void
weak_clear_no_lock(weak_table_t *weak_table, id referent_id)
{
objc_object *referent = (objc_object *)referent_id;
//通过对象本身,和weak弱引用表
weak_entry_t *entry = weak_entry_for_referent(weak_table, referent);
if (entry == nil) {
/// XXX shouldn't happen, but does with mismatched CF/objc
//printf("XXX no entry for clear deallocating %p\n", referent);
return;
}
// zero out references
weak_referrer_t *referrers;//存储弱引用对象数组
size_t count;
if (entry->out_of_line()) {
referrers = entry->referrers;
count = TABLE_SIZE(entry);
}
else {
referrers = entry->inline_referrers;
count = WEAK_INLINE_COUNT;
}
//遍历存储弱引用的数组,把弱引用对象一一赋值为nil
for (size_t i = 0; i < count; ++i) {
objc_object **referrer = referrers[i];
if (referrer) {
if (*referrer == referent) {
*referrer = nil;
}
else if (*referrer) {
_objc_inform("__weak variable at %p holds %p instead of %p. "
"This is probably incorrect use of "
"objc_storeWeak() and objc_loadWeak(). "
"Break on objc_weak_error to debug.\n",
referrer, (void*)*referrer, (void*)referent);
objc_weak_error();
}
}
}
//把对象的弱引用列表从弱引用列表中移除
weak_entry_remove(weak_table, entry);
}
小结
- 注册过程
在runtime维护的weak弱引用散列表中,obj做为key,弱引用对象的地址组成的数组作为value来进行存储,并且会把isa指针中weakly_referenced设置为true - 销毁过程
obj引用计数为0,调用dealloc,通过isa指针中的weakly_referenced来清空obj对象的weak弱引用列表,首先通过obj对象从runtime维护的散列表中取出obj对应的weak弱引用数组,然后再遍历这个weak弱引用数组,把每一个弱引用对象赋值为nil,之后在将obj对象对应的这个弱引用weak数组从runtime维护的weak散列表中移除
-参考资料
iOS 底层解析weak的实现原理(包含weak对象的初始化,引用,释放的分析)
网友评论