美文网首页污力_sparkSpark深入学习
Spark Sort Based Shuffle内存分析

Spark Sort Based Shuffle内存分析

作者: 祝威廉 | 来源:发表于2015-12-19 21:18 被阅读10195次

    分布式系统里的Shuffle 阶段往往是非常复杂的,而且分支条件也多,我只能按着我关注的线去描述。肯定会有不少谬误之处,我会根据自己理解的深入,不断更新这篇文章。

    前言

    借用和董神的一段对话说下背景:

    shuffle共有三种,别人讨论的是hash shuffle,这是最原始的实现,曾经有两个版本,第一版是每个map产生r个文件,一共产生mr个文件,由于产生的中间文件太大影响扩展性,社区提出了第二个优化版本,让一个core上map共用文件,减少文件数目,这样共产生corer个文件,好多了,但中间文件数目仍随任务数线性增加,仍难以应对大作业,但hash shuffle已经优化到头了。为了解决hash shuffle性能差的问题,又引入sort shuffle,完全借鉴mapreduce实现,每个map产生一个文件,彻底解决了扩展性问题

    目前Sort Based Shuffle 是作为默认Shuffle类型的。Shuffle 是一个很复杂的过程,任何一个环节都足够写一篇文章。所以这里,我尝试换个方式,从实用的角度出发,让读者有两方面的收获:

    1. 剖析哪些环节,哪些代码可能会让内存产生问题
    2. 控制相关内存的参数

    有时候,我们宁可程序慢点,也不要OOM,至少要先跑步起来,希望这篇文章能够让你达成这个目标。

    同时我们会提及一些类名,这些类方便你自己想更深入了解时,可以方便的找到他们,自己去探个究竟。

    Shuffle 概览

    Spark 的Shuffle 分为 Write,Read 两阶段。我们预先建立三个概念:

    • Write 对应的是ShuffleMapTask,具体的写操作ExternalSorter来负责

    • Read 阶段由ShuffleRDD里的HashShuffleReader来完成。如果拉来的数据如果过大,需要落地,则也由ExternalSorter来完成的

    • 所有Write 写完后,才会执行Read。 他们被分成了两个不同的Stage阶段。

    也就是说,Shuffle Write ,Shuffle Read 两阶段都可能需要落磁盘,并且通过Disk Merge 来完成最后的Sort归并排序。

    Shuffle Write 内存消耗分析

    Shuffle Write 的入口链路为:

    org.apache.spark.scheduler.ShuffleMapTask
    ---> org.apache.spark.shuffle.sort.SortShuffleWriter 
       ---> org.apache.spark.util.collection.ExternalSorter
    

    会产生内存瓶颈的其实就是 org.apache.spark.util.collection.ExternalSorter。我们看看这个复杂的ExternalSorter都有哪些地方在占用内存:

    第一个地:

    private var map = new PartitionedAppendOnlyMap[K, C]
    

    我们知道,数据都是先写内存,内存不够了,才写磁盘。这里的map就是那个放数据的内存了。

    这个PartitionedAppendOnlyMap内部维持了一个数组,是这样的:

    private var data = new Array[AnyRef](2 * capacity)
    

    也就是他消耗的并不是Storage的内存,所谓Storage内存,指的是由blockManager管理起来的内存。

    PartitionedAppendOnlyMap 放不下,要落地,那么不能硬生生的写磁盘,所以需要个buffer,然后把buffer再一次性写入磁盘文件。这个buffer是由参数

    spark.shuffle.file.buffer=32k
    

    控制的。数据获取的过程中,序列化反序列化,也是需要空间的,所以Spark 对数量做了限制,通过如下参数控制:

     spark.shuffle.spill.batchSize=10000
    

    假设一个Executor的可使用的Core为 C个,那么对应需要的内存消耗为:

     C * 32k + C * 10000个Record + C * PartitionedAppendOnlyMap
    

    这么看来,写文件的buffer不是问题,而序列化的batchSize也不是问题,几万或者十几万个Record 而已。那C * PartitionedAppendOnlyMap 到底会有多大呢?我先给个结论:

       C * PartitionedAppendOnlyMap < ExecutorHeapMemeory * 0.2 * 0.8 
    

    怎么得到上面的结论呢?核心店就是要判定PartitionedAppendOnlyMap 需要占用多少内存,而它到底能占用内存,则由触发写磁盘动作决定,因为一旦写磁盘,PartitionedAppendOnlyMap所占有的内存就会被释放。下面是判断是否写磁盘的逻辑代码:

     estimatedSize = map.estimateSize()
     if (maybeSpill(map, estimatedSize)) { 
              map = new PartitionedAppendOnlyMap[K, C]
     }
    

    每放一条记录,就会做一次内存的检查,看PartitionedAppendOnlyMap 到底占用了多少内存。如果真是这样,假设检查一次内存1ms, 1kw 就不得了的时间了。所以肯定是不行的,所以 estimateSize其实是使用采样算法来做的。

    第二个,我们也不希望mayBeSpill太耗时,所以 maybeSpill 方法里就搞了很多东西,减少耗时。我们看看都设置了哪些防线

    首先会判定要不要执行内部逻辑:

       elementsRead % 32 == 0 && currentMemory >= myMemoryThreshold
    

    每隔32次会进行一次检查,并且要当前PartitionedAppendOnlyMap currentMemory > myMemoryThreshold 才会进一步判定是不是要spill.

    其中 myMemoryThreshold可通过如下配置获得初始值

    spark.shuffle.spill.initialMemoryThreshold =  5 * 1024 * 1024
    

    接着会向 shuffleMemoryManager 要 2 * currentMemory - myMemoryThreshold 的内存,shuffleMemoryManager 是被Executor 所有正在运行的Task(Core) 共享的,能够分配出去的内存是:

    ExecutorHeapMemeory * 0.2 * 0.8 
    

    上面的数字可通过下面两个配置来更改:

    spark.shuffle.memoryFraction=0.2
    spark.shuffle.safetyFraction=0.8
    

    如果无法获取到足够的内存,就会触发真的spill操作了。

    看到这里,上面的结论就显而易见了。

    然而,这里我们忽略了一个很大的问题,就是

     estimatedSize = map.estimateSize()
    

    为什么说它是大问题,前面我们说了,estimateSize 是近似估计,所以有可能估的不准,也就是实际内存会远远超过预期。

    具体的大家可以看看 org.apache.spark.util.collection.SizeTracker

    我这里给出一个结论:

    如果你内存开的比较大,其实反倒风险更高,因为estimateSize 并不是每次都去真实的算缓存。它是通过采样来完成的,而采样的周期不是固定的,而是指数增长的,比如第一次采样完后,PartitionedAppendOnlyMap 要经过1.1次的update/insert操作之后才进行第二次采样,然后经过1.1*.1.1次之后进行第三次采样,以此递推,假设你内存开的大,那PartitionedAppendOnlyMap可能要经过几十万次更新之后之后才会进行一次采样,然后才能计算出新的大小,这个时候几十万次更新带来的新的内存压力,可能已经让你的GC不堪重负了。

    当然,这是一种折中,因为确实不能频繁采样。

    如果你不想出现这种问题,要么自己替换实现这个类,要么将

    spark.shuffle.safetyFraction=0.8 
    

    设置的更小一些。

    Shuffle Read 内存消耗分析

    Shuffle Read 的入口链路为:

    org.apache.spark.rdd.ShuffledRDD
    ---> org.apache.spark.shuffle.sort.HashShuffleReader
       --->  org.apache.spark.util.collection.ExternalAppendOnlyMap
       --->  org.apache.spark.util.collection.ExternalSorter
    

    Shuffle Read 会更复杂些,尤其是从各个节点拉取数据。但这块不是不是我们的重点。按流程,主要有:

    1. 获取待拉取数据的迭代器
    2. 使用AppendOnlyMap/ExternalAppendOnlyMap 做combine
    3. 如果需要对key排序,则使用ExternalSorter

    其中1后续会单独列出文章。3我们在write阶段已经讨论过。所以这里重点是第二个步骤,combine阶段。

    如果你开启了

    spark.shuffle.spill=true
    

    则使用ExternalAppendOnlyMap,否则使用AppendOnlyMap。两者的区别是,前者如果内存不够,则落磁盘,会发生spill操作,后者如果内存不够,直接OOM了。

    这里我们会重点分析ExternalAppendOnlyMap。

    ExternalAppendOnlyMap 作为内存缓冲数据的对象如下:

     private var currentMap = new SizeTrackingAppendOnlyMap[K, C]
    

    如果currentMap 对象向申请不到内存,就会触发spill动作。判定内存是否充足的逻辑和Shuffle Write 完全一致。

    Combine做完之后,ExternalAppendOnlyMap 会返回一个Iterator,叫做ExternalIterator,这个Iterator背后的数据源是所有spill文件以及当前currentMap里的数据。

    我们进去 ExternalIterator 看看,唯一的一个占用内存的对象是这个优先队列:

       private val mergeHeap = new mutable.PriorityQueue[StreamBuffer]
    

    mergeHeap 里元素数量等于所有spill文件个数加一。StreamBuffer 的结构:

     private class StreamBuffer(    
                        val iterator: BufferedIterator[(K, C)],    
                        val pairs: ArrayBuffer[(K, C)])
    

    其中iterator 只是一个对象引用,pairs 应该保存的是iterator里的第一个元素(如果hash有冲突的话,则为多个)

    所以mergeHeap 应该不占用什么内存。到这里我们看看应该占用多少内存。依然假设 CoreNum 为 C,则

      C * 32k + C  * mergeHeap  + C * SizeTrackingAppendOnlyMap  
    

    所以这一段占用内存较大的依然是 SizeTrackingAppendOnlyMap ,一样的,他的值也符合如下公式

     C * SizeTrackingAppendOnlyMap < ExecutorHeapMemeory * 0.2 * 0.8
    

    ExternalAppendOnlyMap 的目的是做Combine,然后如果你还设置了Order,那么接着会启用 ExternalSorter 来完成排序。

    经过上文对Shuffle Write的使用,相比大家也对ExternalSorter有一定的了解了,此时应该占用内存的地方最大不超过下面的这个值:

     C * SizeTrackingAppendOnlyMap  + C * PartitionedAppendOnlyMap
    

    不过即使如此,因为他们共享一个shuffleMemoryManager,则理论上只有这么大:

     C * SizeTrackingAppendOnlyMap <  ExecutorHeapMemeory * 0.2 * 0.8
    

    分析到这里,我们可以做个总结:

    1. Shuffle Read阶段如果内存不足,有两个阶段会落磁盘,分别是Combine 和 Sort 阶段。对应的都会spill小文件,并且产生读。
    2. Shuffle Read 阶段如果开启了spill功能,则基本能保证内存控制在 ExecutorHeapMemeory * 0.2 * 0.8 之内。

    后话

    如果大家对Sort Shuffle 落磁盘文件这块感兴趣,还可以看看这篇文章 Spark Shuffle Write阶段磁盘文件分析

    相关文章

      网友评论

      • GaryHuang:挺好~ 期待shuffle read的内存分析 :smile:
      • jacksu在简书:这边文章如果修改为Sort Shuffle,貌似部分解释有问题吧,有些解释是Hash Shuffle
        祝威廉:@jacksu_ 我说的是某一瞬间,最大的占用量。mapTask可以非常大,但是能够同时并行运行的决定于core数
        jacksu在简书:@祝威廉 C * 32k + C * 10000个Record + C * PartitionedAppendOnlyMap,个人感觉C不是core数而是spark.executor.cores/ spark.task.cpus数即mapTask数。
        祝威廉:@jacksu_ 那个部分是 hash shuffle的部分?

      本文标题:Spark Sort Based Shuffle内存分析

      本文链接:https://www.haomeiwen.com/subject/dtouhttx.html