美文网首页
tensorflow笔记:6.2 制作数据集

tensorflow笔记:6.2 制作数据集

作者: 九除以三还是三哦 | 来源:发表于2019-08-10 22:13 被阅读0次
    • 基于TensorFlow制作tfrecord格式的数据集

    ps:这里接触了好多新东西,感觉还是似懂非懂的(大概原理懂了,但是具体 实现的函数文件什么的都没有见过,还是要好好看看)。

    1. 数据集生成读取文件 mnist_ generateds.py

      • tfrecords 文件
        (1) tfrecords 是一种二进制文件,可先将图片和标签制作成该格式的文件。
        使用 tfrecords 进行数据读取,会提高内存利用率。
        (2) tf.train.Example : 用来存储训练数据 。 训练数据的特征用 键值对 的形式表示。
        如::‘ img_raw ’ 值 ‘ label ’ 值 值是 Byteslist/FloatList/Int64List
        (3) SerializeToString( ) 把数据序列化成字符串存储。

      • 生成tfrecords 文件

    2. 反向传播文件 修改图片标签获取的接口 mnist_backward .py
      关键操作:利用多线程提高图片和标签的批获取效率
      方法:将批获取的操作放到线程协调器开启和关闭之间
      开启线程协调器:

    coord =tf.train.Coordinator( )
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)
    

    关闭线程协调器:

    coord.request_stop( )
    coord.join(threads)
    
    1. 测试文件修改图片标签获取的接口( mnist_test.py)

    • 测试过的代码 fc4
    代码信息.png

    mnist_generated.py

    #coding:utf-8
    import tensorflow as tf
    import numpy as np
    from PIL import Image
    import os
    
    image_train_path='./mnist_data_jpg/mnist_train_jpg_60000/'
    label_train_path='./mnist_data_jpg/mnist_train_jpg_60000.txt'
    tfRecord_train='./data/mnist_train.tfrecords'
    image_test_path='./mnist_data_jpg/mnist_test_jpg_10000/'
    label_test_path='./mnist_data_jpg/mnist_test_jpg_10000.txt'
    tfRecord_test='./data/mnist_test.tfrecords'
    data_path='./data'
    resize_height = 28
    resize_width = 28
    
    #生成tfrecords文件
    def write_tfRecord(tfRecordName, image_path, label_path):
        #新建一个writer
        writer = tf.python_io.TFRecordWriter(tfRecordName)  
        num_pic = 0 
        f = open(label_path, 'r')
        contents = f.readlines()
        f.close()
        #循环遍历每张图和标签 
        for content in contents:
            value = content.split()
            img_path = image_path + value[0] 
            img = Image.open(img_path)
            img_raw = img.tobytes() 
            labels = [0] * 10  
            labels[int(value[1])] = 1  
            #把每张图片和标签封装到example中    
            example = tf.train.Example(features=tf.train.Features(feature={
                    'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw])),
                    'label': tf.train.Feature(int64_list=tf.train.Int64List(value=labels))
                    })) 
            #把example进行序列化
            writer.write(example.SerializeToString())
            num_pic += 1 
            print ("the number of picture:", num_pic)
        #关闭writer
        writer.close()
        print("write tfrecord successful")
    
    def generate_tfRecord():
        isExists = os.path.exists(data_path) 
        if not isExists: 
            os.makedirs(data_path)
            print ('The directory was created successfully')
        else:
            print ('directory already exists') 
        write_tfRecord(tfRecord_train, image_train_path, label_train_path)
        write_tfRecord(tfRecord_test, image_test_path, label_test_path)
    #解析tfrecords文件  
    def read_tfRecord(tfRecord_path):
        #该函数会生成一个先入先出的队列,文件阅读器会使用它来读取数据
        filename_queue = tf.train.string_input_producer([tfRecord_path], shuffle=True)
        #新建一个reader
        reader = tf.TFRecordReader()
        #把读出的每个样本保存在serialized_example中进行解序列化,标签和图片的键名应该和制作tfrecords的键名相同,其中标签给出几分类。
        _, serialized_example = reader.read(filename_queue) 
        #将tf.train.Example协议内存块(protocol buffer)解析为张量
        features = tf.parse_single_example(serialized_example,
                                           features={
                                            'label': tf.FixedLenFeature([10], tf.int64),
                                            'img_raw': tf.FixedLenFeature([], tf.string)
                                            })
        #将img_raw字符串转换为8位无符号整型
        img = tf.decode_raw(features['img_raw'], tf.uint8)
        #将形状变为一行784列
        img.set_shape([784])
        img = tf.cast(img, tf.float32) * (1. / 255)
        #变成0到1之间的浮点数      
        label = tf.cast(features['label'], tf.float32)
        #返回图片和标签
        return img, label 
          
    def get_tfrecord(num, isTrain=True):
        if isTrain:
            tfRecord_path = tfRecord_train
        else:
            tfRecord_path = tfRecord_test
        img, label = read_tfRecord(tfRecord_path)
        #随机读取一个batch的数据
        img_batch, label_batch = tf.train.shuffle_batch([img, label],
                                                        batch_size = num,
                                                        num_threads = 2,
                                                        capacity = 1000,
                                                        min_after_dequeue = 700)
        #返回的图片和标签为随机抽取的batch_size组
        return img_batch, label_batch
    
    def main():
        generate_tfRecord()
    
    if __name__ == '__main__':
        main()
    

    mnist_forward.py

    #coding:utf-8
    #版本信息:ubuntu18.04  python3.6.8  tensorflow 1.14.0
    #作者:九除以三还是三哦  如有错误,欢迎评论指正!!
    #1前向传播过程
    import tensorflow as tf
    
    #网络输入节点为784个(代表每张输入图片的像素个数)
    INPUT_NODE = 784
    #输出节点为10个(表示输出为数字0-9的十分类)
    OUTPUT_NODE = 10
    #隐藏层节点500个
    LAYER1_NODE = 500
    
    
    def get_weight(shape, regularizer):
        #参数满足截断正态分布,并使用正则化,
        w = tf.Variable(tf.random.truncated_normal(shape,stddev=0.1))
        #w = tf.Variable(tf.random_normal(shape,stddev=0.1))
        #将每个参数的正则化损失加到总损失中
        if regularizer != None: tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(w))
        return w
    
    
    def get_bias(shape):  
        #初始化的一维数组,初始化值为全 0
        b = tf.Variable(tf.zeros(shape))  
        return b
        
    def forward(x, regularizer):
        #由输入层到隐藏层的参数w1形状为[784,500]
        w1 = get_weight([INPUT_NODE, LAYER1_NODE], regularizer)
        #由输入层到隐藏的偏置b1形状为长度500的一维数组,
        b1 = get_bias([LAYER1_NODE])
        #前向传播结构第一层为输入 x与参数 w1矩阵相乘加上偏置 b1 ,再经过relu函数 ,得到隐藏层输出 y1。
        y1 = tf.nn.relu(tf.matmul(x, w1) + b1)
        #由隐藏层到输出层的参数w2形状为[500,10]
        w2 = get_weight([LAYER1_NODE, OUTPUT_NODE], regularizer)
        #由隐藏层到输出的偏置b2形状为长度10的一维数组
        b2 = get_bias([OUTPUT_NODE])
        #前向传播结构第二层为隐藏输出 y1与参 数 w2 矩阵相乘加上偏置 矩阵相乘加上偏置 b2,得到输出 y。
        #由于输出 。由于输出 y要经过softmax oftmax 函数,使其符合概率分布,故输出y不经过 relu函数
        y = tf.matmul(y1, w2) + b2
        return y
    

    mnist_backward.py

    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    import mnist_forward
    import os
    import mnist_generateds#1
    
    BATCH_SIZE = 200
    LEARNING_RATE_BASE = 0.1
    LEARNING_RATE_DECAY = 0.99
    REGULARIZER = 0.0001
    STEPS = 50000
    MOVING_AVERAGE_DECAY = 0.99
    MODEL_SAVE_PATH="./model/"
    MODEL_NAME="mnist_model"
    train_num_examples = 60000#2
    
    def backward():
    
        x = tf.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE])
        y_ = tf.placeholder(tf.float32, [None, mnist_forward.OUTPUT_NODE])
        y = mnist_forward.forward(x, REGULARIZER)
        global_step = tf.Variable(0, trainable=False) 
    
        ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
        cem = tf.reduce_mean(ce)
        loss = cem + tf.add_n(tf.get_collection('losses'))
    
        learning_rate = tf.train.exponential_decay(
            LEARNING_RATE_BASE,
            global_step,
            train_num_examples / BATCH_SIZE, 
            LEARNING_RATE_DECAY,
            staircase=True)
    
        train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
    
        ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
        ema_op = ema.apply(tf.trainable_variables())
        with tf.control_dependencies([train_step, ema_op]):
            train_op = tf.no_op(name='train')
    
        saver = tf.train.Saver()
        img_batch, label_batch = mnist_generateds.get_tfrecord(BATCH_SIZE, isTrain=True)#3
    
        with tf.Session() as sess:
            init_op = tf.global_variables_initializer()
            sess.run(init_op)
    
            ckpt = tf.train.get_checkpoint_state(MODEL_SAVE_PATH)
            if ckpt and ckpt.model_checkpoint_path:
                saver.restore(sess, ckpt.model_checkpoint_path)
                
            coord = tf.train.Coordinator()#4
            threads = tf.train.start_queue_runners(sess=sess, coord=coord)#5
            
            for i in range(STEPS):
                xs, ys = sess.run([img_batch, label_batch])#6
                _, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys})
                if i % 1000 == 0:
                    print("After %d training step(s), loss on training batch is %g." % (step, loss_value))
                    saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step)
    
            coord.request_stop()#7
            coord.join(threads)#8
    
    
    def main():
        backward()#9
    
    if __name__ == '__main__':
        main()
    

    mnist_test.py

    #coding:utf-8
    import time
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    import mnist_forward
    import mnist_backward
    import mnist_generateds
    TEST_INTERVAL_SECS = 5
    #手动给出测试的总样本数1万
    TEST_NUM = 10000#1
    
    def test():
        with tf.Graph().as_default() as g:
            x = tf.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE])
            y_ = tf.placeholder(tf.float32, [None, mnist_forward.OUTPUT_NODE])
            y = mnist_forward.forward(x, None)
    
            ema = tf.train.ExponentialMovingAverage(mnist_backward.MOVING_AVERAGE_DECAY)
            ema_restore = ema.variables_to_restore()
            saver = tf.train.Saver(ema_restore)
            
            correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
            accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
            #用函数get_tfrecord替换读取所有测试集1万张图片
            img_batch, label_batch = mnist_generateds.get_tfrecord(TEST_NUM, isTrain=False)#2
    
            while True:
                with tf.Session() as sess:
                    ckpt = tf.train.get_checkpoint_state(mnist_backward.MODEL_SAVE_PATH)
                    if ckpt and ckpt.model_checkpoint_path:
                        saver.restore(sess, ckpt.model_checkpoint_path)
                        global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
                        #利用多线程提高图片和标签的批获取效率 
                        coord = tf.train.Coordinator()#3
                        #启动输入队列的线程
                        threads = tf.train.start_queue_runners(sess=sess, coord=coord)#4
    
                        #执行图片和标签的批获取
                        xs, ys = sess.run([img_batch, label_batch])#5
    
                        accuracy_score = sess.run(accuracy, feed_dict={x: xs, y_: ys})
    
                        print("After %s training step(s), test accuracy = %g" % (global_step, accuracy_score))
                        #关闭线程协调器
                        coord.request_stop()#6
                        coord.join(threads)#7
    
                    else:
                        print('No checkpoint file found')
                        return
                time.sleep(TEST_INTERVAL_SECS)
    
    def main():
        test()#8
    
    if __name__ == '__main__':
        main()
    

    mnist_app.py

    #coding:utf-8
    
    import tensorflow as tf
    import numpy as np
    from PIL import Image
    import mnist_backward
    import mnist_forward
    
    def restore_model(testPicArr):
        #利用tf.Graph()复现之前定义的计算图
        with tf.Graph().as_default() as tg:
            x = tf.compat.v1.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE])
            #调用mnist_forward文件中的前向传播过程forword()函数
            y = mnist_forward.forward(x, None)
            #得到概率最大的预测值
            preValue = tf.argmax(y, 1)
    
             #实例化具有滑动平均的saver对象
            variable_averages = tf.train.ExponentialMovingAverage(mnist_backward.MOVING_AVERAGE_DECAY)
            variables_to_restore = variable_averages.variables_to_restore()
            saver = tf.compat.v1.train.Saver(variables_to_restore)
    
            with tf.compat.v1.Session() as sess:
                #通过ckpt获取最新保存的模型
                ckpt = tf.train.get_checkpoint_state(mnist_backward.MODEL_SAVE_PATH)
                if ckpt and ckpt.model_checkpoint_path:
                    saver.restore(sess, ckpt.model_checkpoint_path)
            
                    preValue = sess.run(preValue, feed_dict={x:testPicArr})
                    return preValue
                else:
                    print("No checkpoint file found")
                    return -1
    
    #预处理,包括resize,转变灰度图,二值化
    def pre_pic(picName):
        img = Image.open(picName)
        reIm = img.resize((28,28), Image.ANTIALIAS)
        im_arr = np.array(reIm.convert('L'))
        #对图片做二值化处理(这样以滤掉噪声,另外调试中可适当调节阈值)
        threshold = 50
        #模型的要求是黑底白字,但输入的图是白底黑字,所以需要对每个像素点的值改为255减去原值以得到互补的反色。
        for i in range(28):
            for j in range(28):
                im_arr[i][j] = 255 - im_arr[i][j]
                if (im_arr[i][j] < threshold):
                    im_arr[i][j] = 0
                else: im_arr[i][j] = 255
        #把图片形状拉成1行784列,并把值变为浮点型(因为要求像素点是0-1 之间的浮点数)
        nm_arr = im_arr.reshape([1, 784])
        nm_arr = nm_arr.astype(np.float32)
        #接着让现有的RGB图从0-255之间的数变为0-1之间的浮点数
        img_ready = np.multiply(nm_arr, 1.0/255.0)
    
        return img_ready
    
    def application():
        #输入要识别的几张图片
        testNum = int(input("input the number of test pictures:"))
        for i in range(testNum):
            #给出待识别图片的路径和名称
            testPic = input("the path of test picture:")
            #图片预处理
            testPicArr = pre_pic(testPic)
            #获取预测结果
            preValue = restore_model(testPicArr)
            print ("The prediction number is:", preValue)
    
    def main():
        application()
    
    if __name__ == '__main__':
        main()      
    
    
    • 运行结果

    测试结果不如上次的理想,即使是老师给出的代码也有两个数字识别错误。但可以看到程序在测试集上跑出的准确率还是挺高的,在98%左右。
    老师的建议是考虑图片噪声是否过大,从图片的预处理处进行优化

    准确率.png

    • 小结

    至此,完全连接网络的全部内容已经完毕,第一个数字识别的实践项目已经完成啦(为什么还感觉是小白)
    代码好长好繁琐,报错信息更长更繁琐,不同版本之间的差异让小白着实难过。不过所学能很快的实践应用还是hin开心啦。


    相关文章

      网友评论

          本文标题:tensorflow笔记:6.2 制作数据集

          本文链接:https://www.haomeiwen.com/subject/dujdjctx.html