美文网首页
今日学术视野(2019.2.14)

今日学术视野(2019.2.14)

作者: ZQtGe6 | 来源:发表于2019-02-14 05:59 被阅读85次

cs.AI - 人工智能
cs.CL - 计算与语言
cs.CR - 加密与安全
cs.CV - 机器视觉与模式识别
cs.CY - 计算与社会
cs.DC - 分布式、并行与集群计算
cs.IR - 信息检索
cs.IT - 信息论
cs.LG - 自动学习
cs.NE - 神经与进化计算
cs.NI - 网络和互联网体系结构
cs.RO - 机器人学
cs.SD - 声音处理
cs.SI - 社交网络与信息网络
eess.SP - 信号处理
math.ST - 统计理论
physics.soc-ph - 物理学与社会
stat.AP - 应用统计
stat.ME - 统计方法论
stat.ML - (统计)机器学习

• [cs.AI]ELF OpenGo: An Analysis and Open Reimplementation of AlphaZero
• [cs.AI]NAIL: A General Interactive Fiction Agent
• [cs.AI]VERIFAI: A Toolkit for the Design and Analysis of Artificial Intelligence-Based Systems
• [cs.CL]BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model
• [cs.CL]Humor in Word Embeddings: Cockamamie Gobbledegook for Nincompoops
• [cs.CL]Table2answer: Read the database and answer without SQL
• [cs.CR]Adversarial Samples on Android Malware Detection Systems for IoT Systems
• [cs.CR]Asymptotic Performance Analysis of Blockchain Protocols
• [cs.CR]Examining Adversarial Learning against Graph-based IoT Malware Detection Systems
• [cs.CR]Mind the Mining
• [cs.CR]TensorSCONE: A Secure TensorFlow Framework using Intel SGX
• [cs.CR]Verification Code Recognition Based on Active and Deep Learning
• [cs.CV]A system for generating complex physically accurate sensor images for automotive applications
• [cs.CV]Bag of Freebies for Training Object Detection Neural Networks
• [cs.CV]Brain MRI Segmentation using Rule-Based Hybrid Approach
• [cs.CV]Center of circle after perspective transformation
• [cs.CV]De-identification without losing faces
• [cs.CV]Enhancement Mask for Hippocampus Detection and Segmentation
• [cs.CV]Extended 2D Volumetric Consensus Hippocampus Segmentation
• [cs.CV]Fast-SCNN: Fast Semantic Segmentation Network
• [cs.CV]GAN- vs. JPEG2000 Image Compression for Distributed Automotive Perception: Higher Peak SNR Does Not Mean Better Semantic Segmentation
• [cs.CV]Learning to Authenticate with Deep Multibiometric Hashing and Neural Network Decoding
• [cs.CV]MASC: Multi-scale Affinity with Sparse Convolution for 3D Instance Segmentation
• [cs.CV]Manifestation of Image Contrast in Deep Networks
• [cs.CV]Max-C and Min-D Projection Autoassociative Fuzzy Morphological Memories: Theory and Applications for Face Recognition
• [cs.CV]Psi-Net: Shape and boundary aware joint multi-task deep network for medical image segmentation
• [cs.CV]ReStoCNet: Residual Stochastic Binary Convolutional Spiking Neural Network for Memory-Efficient Neuromorphic Computing
• [cs.CV]Riemannian joint dimensionality reduction and dictionary learning on symmetric positive definite manifold
• [cs.CV]Synthesizing New Retinal Symptom Images by Multiple Generative Models
• [cs.CV]The effect of scene context on weakly supervised semantic segmentation
• [cs.CV]Using Deep Cross Modal Hashing and Error Correcting Codes for Improving the Efficiency of Attribute Guided Facial Image Retrieval
• [cs.CV]You Only Look & Listen Once: Towards Fast and Accurate Visual Grounding
• [cs.CY]Coloring in the Links: Capturing Social Ties as They are Perceived
• [cs.DC]Distributed and Application-aware Task Scheduling in Edge-clouds
• [cs.DC]Performance of All-Pairs Shortest-Paths Solvers with Apache Spark
• [cs.IR]A Domain Generalization Perspective on Listwise Context Modeling
• [cs.IR]Cross-Modal Music Retrieval and Applications: An Overview of Key Methodologies
• [cs.IR]Reading Protocol: Understanding what has been Read in Interactive Information Retrieval Tasks
• [cs.IT]A Class of Narrow-Sense BCH Codes
• [cs.IT]An Enhanced SDR based Global Algorithm for Nonconvex Complex Quadratic Programs with Signal Processing Applications
• [cs.IT]Beamwidth Control for NOMA in Hybrid mmWave Communication Systems
• [cs.IT]Can Massive MIMO Support Uplink Intensive Applications?
• [cs.IT]IEEE 802.11be - Extremely High Throughput: The Next Generation of Wi-Fi Technology Beyond 802.11ax
• [cs.IT]On Conflict Free DNA Codes
• [cs.IT]SLNR Based Precoding for One-Bit Quantized Massive MIMO in mmWave Communications
• [cs.LG]A Probabilistic Framework to Node-level Anomaly Detection in Communication Networks
• [cs.LG]A Theory of Selective Prediction
• [cs.LG]A simple and efficient architecture for trainable activation functions
• [cs.LG]ACTRCE: Augmenting Experience via Teacher's Advice For Multi-Goal Reinforcement Learning
• [cs.LG]An In-Vehicle KWS System with Multi-Source Fusion for Vehicle Applications
• [cs.LG]Bayesian Online Detection and Prediction of Change Points
• [cs.LG]Binary Stochastic Filtering: a Solution for Supervised Feature Selection and Neural Network Shape Optimization
• [cs.LG]Capacity allocation analysis of neural networks: A tool for principled architecture design
• [cs.LG]Deep Reinforcement Learning from Policy-Dependent Human Feedback
• [cs.LG]Density Estimation and Incremental Learning of Latent Vector for Generative Autoencoders
• [cs.LG]Divergence-Based Motivation for Online EM and Combining Hidden Variable Models
• [cs.LG]Domain Constraint Approximation based Semi Supervision
• [cs.LG]Effective Network Compression Using Simulation-Guided Iterative Pruning
• [cs.LG]Gaussian Mean Field Regularizes by Limiting Learned Information
• [cs.LG]Hyperbolic Disk Embeddings for Directed Acyclic Graphs
• [cs.LG]Improving learnability of neural networks: adding supplementary axes to disentangle data representation
• [cs.LG]Infinite Mixture Prototypes for Few-Shot Learning
• [cs.LG]LS-Tree: Model Interpretation When the Data Are Linguistic
• [cs.LG]MaCow: Masked Convolutional Generative Flow
• [cs.LG]Multi-objective Bayesian optimisation with preferences over objectives
• [cs.LG]Nearest Neighbor Median Shift Clustering for Binary Data
• [cs.LG]Net2Vis: Transforming Deep Convolutional Networks into Publication-Ready Visualizations
• [cs.LG]PAC-Bayes Analysis of Sentence Representation
• [cs.LG]Performance Dynamics and Termination Errors in Reinforcement Learning: A Unifying Perspective
• [cs.LG]Post-Data Augmentation to Improve Deep Pose Estimation of Extreme and Wild Motions
• [cs.LG]Preferences Implicit in the State of the World
• [cs.LG]Stochastic Reinforcement Learning
• [cs.LG]Thompson Sampling with Information Relaxation Penalties
• [cs.LG]Towards Self-Supervised High Level Sensor Fusion
• [cs.LG]VC Classes are Adversarially Robustly Learnable, but Only Improperly
• [cs.LG]WiseMove: A Framework for Safe Deep Reinforcement Learning for Autonomous Driving
• [cs.NE]Guiding Neuroevolution with Structural Objectives
• [cs.NE]On Residual Networks Learning a Perturbation from Identity
• [cs.NI]A Novel Communication Cost Aware Load Balancing in Content Delivery Networks using Honeybee Algorithm
• [cs.RO]Evolving Robots on Easy Mode: Towards a Variable Complexity Controller for Quadrupeds
• [cs.RO]VIZARD: Reliable Visual Localization for Autonomous Vehicles in Urban Outdoor Environments
• [cs.SD]Adversarial Generation of Time-Frequency Features with application in audio synthesis
• [cs.SI]An Analysis of United States Online Political Advertising Transparency
• [cs.SI]Asymptotic resolution bounds of generalized modularity and statistically significant community detection
• [cs.SI]Meta Diagram based Active Social Networks Alignment
• [cs.SI]RTbust: Exploiting Temporal Patterns for Botnet Detection on Twitter
• [cs.SI]WikiLinkGraphs: A complete, longitudinal and multi-language dataset of the Wikipedia link networks
• [eess.SP]Helping Blind People in Their Meeting Locations to Find Each Other Using RFID Technology
• [eess.SP]Inter-Node Distance Estimation from Multipath Delay Differences of Channels to Observer Nodes
• [eess.SP]RespNet: A deep learning model for extraction of respiration from photoplethysmogram
• [math.ST]Elicitability of Range Value at Risk
• [math.ST]Maximum Likelihood Estimation for Learning Populations of Parameters
• [math.ST]Optimal BIBD-extended designs
• [math.ST]Quickest Change Detection in the Presence of a Nuisance Change
• [math.ST]Statistical inference with F-statistics when fitting simple models to high-dimensional data
• [physics.soc-ph]Wikipedia and Digital Currencies: Interplay Between Collective Attention and Market Performance
• [stat.AP]Achieving GWAS with Homomorphic Encryption
• [stat.AP]Bayesian Inference of a Finite Population Mean Under Length-Biased Sampling
• [stat.AP]Non-Linear Non-Stationary Heteroscedasticity Volatility for Tracking of Jump Processes
• [stat.AP]Winning the Big Data Technologies Horizon Prize: Fast and reliable forecasting of electricity grid traffic by identification of recurrent fluctuations
• [stat.ME]A quantile-based g-computation approach to addressing the effects of exposure mixtures
• [stat.ME]Bayesian cumulative shrinkage for infinite factorizations
• [stat.ML]A Problem-Adaptive Algorithm for Resource Allocation
• [stat.ML]Joint Training of Neural Network Ensembles
• [stat.ML]Learning interpretable continuous-time models of latent stochastic dynamical systems
• [stat.ML]Sparse Feature Selection in Kernel Discriminant Analysis via Optimal Scoring
• [stat.ML]The Cost of Privacy: Optimal Rates of Convergence for Parameter Estimation with Differential Privacy
• [stat.ML]Using Embeddings to Correct for Unobserved Confounding

·····································

• [cs.AI]ELF OpenGo: An Analysis and Open Reimplementation of AlphaZero
Yuandong Tian, Jerry Ma, Qucheng Gong, Shubho Sengupta, Zhuoyuan Chen, James Pinkerton, C. Lawrence Zitnick
http://arxiv.org/abs/1902.04522v1

• [cs.AI]NAIL: A General Interactive Fiction Agent
Matthew Hausknecht, Ricky Loynd, Greg Yang, Adith Swaminathan, Jason D. Williams
http://arxiv.org/abs/1902.04259v1

• [cs.AI]VERIFAI: A Toolkit for the Design and Analysis of Artificial Intelligence-Based Systems
Tommaso Dreossi, Daniel J. Fremont, Shromona Ghosh, Edward Kim, Hadi Ravanbakhsh, Marcell Vazquez-Chanlatte, Sanjit A. Seshia
http://arxiv.org/abs/1902.04245v1

• [cs.CL]BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model
Alex Wang, Kyunghyun Cho
http://arxiv.org/abs/1902.04094v1

• [cs.CL]Humor in Word Embeddings: Cockamamie Gobbledegook for Nincompoops
Limor Gultchin, Genevieve Patterson, Nancy Baym, Nathaniel Swinger, Adam Tauman Kalai
http://arxiv.org/abs/1902.02783v2

• [cs.CL]Table2answer: Read the database and answer without SQL
Tong Guo, Huilin Gao
http://arxiv.org/abs/1902.04260v1

• [cs.CR]Adversarial Samples on Android Malware Detection Systems for IoT Systems
Xiaolei Liu, Xiaojiang Du, Xiaosong Zhang, Qingxin Zhu, Mohsen Guizani
http://arxiv.org/abs/1902.04238v1

• [cs.CR]Asymptotic Performance Analysis of Blockchain Protocols
Durand Antoine, Elyes Ben-Hamida, David Leporini, Gérard Memmi
http://arxiv.org/abs/1902.04363v1

• [cs.CR]Examining Adversarial Learning against Graph-based IoT Malware Detection Systems
Ahmed Abusnaina, Aminollah Khormali, Hisham Alasmary, Jeman Park, Afsah Anwar, Ulku Meteriz, Aziz Mohaisen
http://arxiv.org/abs/1902.04416v1

• [cs.CR]Mind the Mining
Guy Goren, Alexander Spiegelman
http://arxiv.org/abs/1902.03899v2

• [cs.CR]TensorSCONE: A Secure TensorFlow Framework using Intel SGX
Roland Kunkel, Do Le Quoc, Franz Gregor, Sergei Arnautov, Pramod Bhatotia, Christof Fetzer
http://arxiv.org/abs/1902.04413v1

• [cs.CR]Verification Code Recognition Based on Active and Deep Learning
Dongliang Xu, Bailing Wang, XiaoJiang Du, Xiaoyan Zhu, zhitao Guan, Xiaoyan Yu, Jingyu Liu
http://arxiv.org/abs/1902.04401v1

• [cs.CV]A system for generating complex physically accurate sensor images for automotive applications
Zhenyi Liu, Minghao Shen, Jiaqi Zhang, Shuangting Liu, Henryk Blasinski, Trisha Lian, Brian Wandell
http://arxiv.org/abs/1902.04258v1

• [cs.CV]Bag of Freebies for Training Object Detection Neural Networks
Zhi Zhang, Tong He, Hang Zhang, Zhongyuan Zhang, Junyuan Xie, Mu Li
http://arxiv.org/abs/1902.04103v1

• [cs.CV]Brain MRI Segmentation using Rule-Based Hybrid Approach
Mustansar Fiaz, Kamran Ali, Abdul Rehman, M. Junaid Gul, Soon Ki Jung
http://arxiv.org/abs/1902.04207v1

• [cs.CV]Center of circle after perspective transformation
Xi Wang, Albert Chern, Marc Alexa
http://arxiv.org/abs/1902.04541v1

• [cs.CV]De-identification without losing faces
Yuezun Li, Siwei Lyu
http://arxiv.org/abs/1902.04202v1

• [cs.CV]Enhancement Mask for Hippocampus Detection and Segmentation
Dengsheng Chen, Wenxi Liu, You Huang, Tong Tong, Yuanlong Yu
http://arxiv.org/abs/1902.04244v1

• [cs.CV]Extended 2D Volumetric Consensus Hippocampus Segmentation
Diedre Carmo, Bruna Silva, Clarissa Yasuda, Letícia Rittner, Roberto Lotufo
http://arxiv.org/abs/1902.04487v1

• [cs.CV]Fast-SCNN: Fast Semantic Segmentation Network
Rudra P K Poudel, Stephan Liwicki, Roberto Cipolla
http://arxiv.org/abs/1902.04502v1

• [cs.CV]GAN- vs. JPEG2000 Image Compression for Distributed Automotive Perception: Higher Peak SNR Does Not Mean Better Semantic Segmentation
Jonas Löhdefink, Andreas Bär, Nico M. Schmidt, Fabian Hüger, Peter Schlicht, Tim Fingscheidt
http://arxiv.org/abs/1902.04311v1

• [cs.CV]Learning to Authenticate with Deep Multibiometric Hashing and Neural Network Decoding
Veeru Talreja, Sobhan Soleymani, Matthew C. Valenti, Nasser M. Nasrabadi
http://arxiv.org/abs/1902.04149v1

• [cs.CV]MASC: Multi-scale Affinity with Sparse Convolution for 3D Instance Segmentation
Chen Liu, Yasutaka Furukawa
http://arxiv.org/abs/1902.04478v1

• [cs.CV]Manifestation of Image Contrast in Deep Networks
Arash Akbarinia, Karl R. Gegenfurtner
http://arxiv.org/abs/1902.04378v1

• [cs.CV]Max-C and Min-D Projection Autoassociative Fuzzy Morphological Memories: Theory and Applications for Face Recognition
Alex Santana dos Santos, Marcos Eduardo Valle
http://arxiv.org/abs/1902.04144v1

• [cs.CV]Psi-Net: Shape and boundary aware joint multi-task deep network for medical image segmentation
Balamurali Murugesan, Kaushik Sarveswaran, Sharath M Shankaranarayana, Keerthi Ram, Mohanasankar Sivaprakasam
http://arxiv.org/abs/1902.04099v1

• [cs.CV]ReStoCNet: Residual Stochastic Binary Convolutional Spiking Neural Network for Memory-Efficient Neuromorphic Computing
Gopalakrishnan Srinivasan, Kaushik Roy
http://arxiv.org/abs/1902.04161v1

• [cs.CV]Riemannian joint dimensionality reduction and dictionary learning on symmetric positive definite manifold
Hiroyuki Kasai, Bamdev Mishra
http://arxiv.org/abs/1902.04186v1

• [cs.CV]Synthesizing New Retinal Symptom Images by Multiple Generative Models
Yi-Chieh Liu, Hao-Hsiang Yang, Chao-Han Huck Yang, Jia-Hong Huang, Meng Tian, Hiromasa Morikawa, Yi-Chang James Tsai, Jesper Tegner
http://arxiv.org/abs/1902.04147v1

• [cs.CV]The effect of scene context on weakly supervised semantic segmentation
Mohammad Kamalzare, Reza Kahani, Alireza Talebpour, Ahmad Mahmoudi-Aznaveh
http://arxiv.org/abs/1902.04356v1

• [cs.CV]Using Deep Cross Modal Hashing and Error Correcting Codes for Improving the Efficiency of Attribute Guided Facial Image Retrieval
Veeru Talreja, Fariborz Taherkhani, Matthew C. Valenti, Nasser M. Nasrabadi
http://arxiv.org/abs/1902.04139v1

• [cs.CV]You Only Look & Listen Once: Towards Fast and Accurate Visual Grounding
Chaorui Deng, Qi Wu, Guanghui Xu, Zhuliang Yu, Yanwu Xu, Kui Jia, Mingkui Tan
http://arxiv.org/abs/1902.04213v1

• [cs.CY]Coloring in the Links: Capturing Social Ties as They are Perceived
Sebastian Deri, Jeremie Rappaz, Luca Maria Aiello, Daniele Quercia
http://arxiv.org/abs/1902.04528v1

• [cs.DC]Distributed and Application-aware Task Scheduling in Edge-clouds
Li Lin, Peng Li, Jinbo Xiong, Mingwei Lin
http://arxiv.org/abs/1902.04362v1

• [cs.DC]Performance of All-Pairs Shortest-Paths Solvers with Apache Spark
Frank Schoeneman, Jaroslaw Zola
http://arxiv.org/abs/1902.04446v1

• [cs.IR]A Domain Generalization Perspective on Listwise Context Modeling
Lin Zhu, Yihong Chen, Bowen He
http://arxiv.org/abs/1902.04484v1

• [cs.IR]Cross-Modal Music Retrieval and Applications: An Overview of Key Methodologies
Meinard Müller, Andreas Arzt, Stefan Balke, Matthias Dorfer, Gerhard Widmer
http://arxiv.org/abs/1902.04397v1

• [cs.IR]Reading Protocol: Understanding what has been Read in Interactive Information Retrieval Tasks
Daniel Hienert, Dagmar Kern, Matthew Mitsui, Chirag Shah, Nicholas J. Belkin
http://arxiv.org/abs/1902.04262v1

• [cs.IT]A Class of Narrow-Sense BCH Codes
Shixin Zhu, Zhonghua Sun, Xiaoshan Kai
http://arxiv.org/abs/1902.04372v1

• [cs.IT]An Enhanced SDR based Global Algorithm for Nonconvex Complex Quadratic Programs with Signal Processing Applications
Cheng Lu, Ya-Feng Liu, Jing Zhou
http://arxiv.org/abs/1902.04287v1

• [cs.IT]Beamwidth Control for NOMA in Hybrid mmWave Communication Systems
Zhiqiang Wei, Derrick Wing Kwan Ng, Jinhong Yuan
http://arxiv.org/abs/1902.04227v1

• [cs.IT]Can Massive MIMO Support Uplink Intensive Applications?
Hong Yang, Erik G. Larsson
http://arxiv.org/abs/1902.04556v1

• [cs.IT]IEEE 802.11be - Extremely High Throughput: The Next Generation of Wi-Fi Technology Beyond 802.11ax
David López-Pérez, Adrian Garcia-Rodriguez, Lorenzo Galati-Giordano, Mika Kasslin, Klaus Doppler
http://arxiv.org/abs/1902.04320v1

• [cs.IT]On Conflict Free DNA Codes
Krishna Gopal Benerjee, Sourav Deb, Manish K Gupta
http://arxiv.org/abs/1902.04419v1

• [cs.IT]SLNR Based Precoding for One-Bit Quantized Massive MIMO in mmWave Communications
Yavuz Yapıcı, Sung Joon Maeng, İsmail Güvenç, Huaiyu Dai, Arupjyoti Bhuyan
http://arxiv.org/abs/1902.04498v1

• [cs.LG]A Probabilistic Framework to Node-level Anomaly Detection in Communication Networks
Batiste Le Bars, Argyris Kalogeratos
http://arxiv.org/abs/1902.04521v1

• [cs.LG]A Theory of Selective Prediction
Mingda Qiao, Gregory Valiant
http://arxiv.org/abs/1902.04256v1

• [cs.LG]A simple and efficient architecture for trainable activation functions
Andrea Apicella, Francesco Isgrò, Roberto Prevete
http://arxiv.org/abs/1902.03306v2

• [cs.LG]ACTRCE: Augmenting Experience via Teacher's Advice For Multi-Goal Reinforcement Learning
Harris Chan, Yuhuai Wu, Jamie Kiros, Sanja Fidler, Jimmy Ba
http://arxiv.org/abs/1902.04546v1

• [cs.LG]An In-Vehicle KWS System with Multi-Source Fusion for Vehicle Applications
Yup Tan, Kan Zheng, Lei Lei
http://arxiv.org/abs/1902.04326v1

• [cs.LG]Bayesian Online Detection and Prediction of Change Points
Diego Agudelo-España, Sebastian Gomez-Gonzalez, Stefan Bauer, Bernhard Schölkopf, Jan Peters
http://arxiv.org/abs/1902.04524v1

• [cs.LG]Binary Stochastic Filtering: a Solution for Supervised Feature Selection and Neural Network Shape Optimization
Andrii Trelin, Ales Prochazka
http://arxiv.org/abs/1902.04510v1

• [cs.LG]Capacity allocation analysis of neural networks: A tool for principled architecture design
Jonathan Donier
http://arxiv.org/abs/1902.04485v1

• [cs.LG]Deep Reinforcement Learning from Policy-Dependent Human Feedback
Dilip Arumugam, Jun Ki Lee, Sophie Saskin, Michael L. Littman
http://arxiv.org/abs/1902.04257v1

• [cs.LG]Density Estimation and Incremental Learning of Latent Vector for Generative Autoencoders
Jaeyoung Yoo, Hojun Lee, Nojun Kwak
http://arxiv.org/abs/1902.04294v1

• [cs.LG]Divergence-Based Motivation for Online EM and Combining Hidden Variable Models
Ehsan Amid, Manfred K. Warmuth
http://arxiv.org/abs/1902.04107v1

• [cs.LG]Domain Constraint Approximation based Semi Supervision
Yifu Wu, Jin Wei, Rigoberto Roche
http://arxiv.org/abs/1902.04177v1

• [cs.LG]Effective Network Compression Using Simulation-Guided Iterative Pruning
Dae-Woong Jeong, Jaehun Kim, Youngseok Kim, Tae-Ho Kim, Myungsu Chae
http://arxiv.org/abs/1902.04224v1

• [cs.LG]Gaussian Mean Field Regularizes by Limiting Learned Information
Julius Kunze, Louis Kirsch, Hippolyt Ritter, David Barber
http://arxiv.org/abs/1902.04340v1

• [cs.LG]Hyperbolic Disk Embeddings for Directed Acyclic Graphs
Ryota Suzuki, Ryusuke Takahama, Shun Onoda
http://arxiv.org/abs/1902.04335v1

• [cs.LG]Improving learnability of neural networks: adding supplementary axes to disentangle data representation
Kim Bukweon, Lee Sung Min, Seo Jin Keun
http://arxiv.org/abs/1902.04205v1

• [cs.LG]Infinite Mixture Prototypes for Few-Shot Learning
Kelsey R. Allen, Evan Shelhamer, Hanul Shin, Joshua B. Tenenbaum
http://arxiv.org/abs/1902.04552v1

• [cs.LG]LS-Tree: Model Interpretation When the Data Are Linguistic
Jianbo Chen, Michael I. Jordan
http://arxiv.org/abs/1902.04187v1

• [cs.LG]MaCow: Masked Convolutional Generative Flow
Xuezhe Ma, Eduard Hovy
http://arxiv.org/abs/1902.04208v1

• [cs.LG]Multi-objective Bayesian optimisation with preferences over objectives
Majid Abdolshah, Alistair Shilton, Santu Rana, Sunil Gupta, Svetha Venkatesh
http://arxiv.org/abs/1902.04228v1

• [cs.LG]Nearest Neighbor Median Shift Clustering for Binary Data
Gaël Beck, Tarn Duong, Mustapha Lebbah, Hanane Azzag
http://arxiv.org/abs/1902.04181v1

• [cs.LG]Net2Vis: Transforming Deep Convolutional Networks into Publication-Ready Visualizations
Alex Bäuerle, Timo Ropinski
http://arxiv.org/abs/1902.04394v1

• [cs.LG]PAC-Bayes Analysis of Sentence Representation
Kento Nozawa, Issei Sato
http://arxiv.org/abs/1902.04247v1

• [cs.LG]Performance Dynamics and Termination Errors in Reinforcement Learning: A Unifying Perspective
Nikki Lijing Kuang, Clement H. C. Leung
http://arxiv.org/abs/1902.04179v1

• [cs.LG]Post-Data Augmentation to Improve Deep Pose Estimation of Extreme and Wild Motions
Kohei Toyoda, Michinari Kono, Jun Rekimoto
http://arxiv.org/abs/1902.04250v1

• [cs.LG]Preferences Implicit in the State of the World
Rohin Shah, Dmitrii Krasheninnikov, Jordan Alexander, Pieter Abbeel, Anca Dragan
http://arxiv.org/abs/1902.04198v1

• [cs.LG]Stochastic Reinforcement Learning
Nikki Lijing Kuang, Clement H. C. Leung, Vienne W. K. Sung
http://arxiv.org/abs/1902.04178v1

• [cs.LG]Thompson Sampling with Information Relaxation Penalties
Seungki Min, Costis Maglaras, Ciamac C. Moallemi
http://arxiv.org/abs/1902.04251v1

• [cs.LG]Towards Self-Supervised High Level Sensor Fusion
Qadeer Khan, Torsten Schön, Patrick Wenzel
http://arxiv.org/abs/1902.04272v1

• [cs.LG]VC Classes are Adversarially Robustly Learnable, but Only Improperly
Omar Montasser, Steve Hanneke, Nathan Srebro
http://arxiv.org/abs/1902.04217v1

• [cs.LG]WiseMove: A Framework for Safe Deep Reinforcement Learning for Autonomous Driving
Jaeyoung Lee, Aravind Balakrishnan, Ashish Gaurav, Krzysztof Czarnecki, Sean Sedwards
http://arxiv.org/abs/1902.04118v1

• [cs.NE]Guiding Neuroevolution with Structural Objectives
Kai Olav Ellefsen, Joost Huizinga, Jim Torresen
http://arxiv.org/abs/1902.04346v1

• [cs.NE]On Residual Networks Learning a Perturbation from Identity
Michael Hauser
http://arxiv.org/abs/1902.04106v1

• [cs.NI]A Novel Communication Cost Aware Load Balancing in Content Delivery Networks using Honeybee Algorithm
Hamid Ghasemi, Mahdi Jafari Siavoshani, Saeed Hadadan
http://arxiv.org/abs/1902.04463v1

• [cs.RO]Evolving Robots on Easy Mode: Towards a Variable Complexity Controller for Quadrupeds
Tønnes Frostad Nygaard, Charles Patrick Martin, Jim Torresen, Kyrre Glette
http://arxiv.org/abs/1902.04403v1

• [cs.RO]VIZARD: Reliable Visual Localization for Autonomous Vehicles in Urban Outdoor Environments
Mathias Bürki, Lukas Schaupp, Marcin Dymczyk, Renaud Dubé, Cesar Cadena, Roland Siegwart, Juan Nieto
http://arxiv.org/abs/1902.04343v1

• [cs.SD]Adversarial Generation of Time-Frequency Features with application in audio synthesis
Andrés Marafioti, Nicki Holighaus, Nathanaël Perraudin, Piotr Majdak
http://arxiv.org/abs/1902.04072v1

• [cs.SI]An Analysis of United States Online Political Advertising Transparency
Laura Edelson, Shikhar Sakhuja, Ratan Dey, Damon McCoy
http://arxiv.org/abs/1902.04385v1

• [cs.SI]Asymptotic resolution bounds of generalized modularity and statistically significant community detection
Xiaoyan Lu, Boleslaw K. Szymanski
http://arxiv.org/abs/1902.04243v1

• [cs.SI]Meta Diagram based Active Social Networks Alignment
Yuxiang Ren, Charu C. Aggarwal, Jiawei Zhang
http://arxiv.org/abs/1902.04220v1

• [cs.SI]RTbust: Exploiting Temporal Patterns for Botnet Detection on Twitter
Michele Mazza, Stefano Cresci, Marco Avvenuti, Walter Quattrociocchi, Maurizio Tesconi
http://arxiv.org/abs/1902.04506v1

• [cs.SI]WikiLinkGraphs: A complete, longitudinal and multi-language dataset of the Wikipedia link networks
Cristian Consonni, David Laniado, Alberto Montresor
http://arxiv.org/abs/1902.04298v1

• [eess.SP]Helping Blind People in Their Meeting Locations to Find Each Other Using RFID Technology
Farshid Sahba, Amin Sahba, Ramin Sahba
http://arxiv.org/abs/1902.03558v1

• [eess.SP]Inter-Node Distance Estimation from Multipath Delay Differences of Channels to Observer Nodes
Gregor Dumphart, Marc Kuhn, Armin Wittneben, Florian Trösch
http://arxiv.org/abs/1902.04350v1

• [eess.SP]RespNet: A deep learning model for extraction of respiration from photoplethysmogram
Vignesh Ravichandran, Balamurali Murugesan, Vaishali Balakarthikeyan, Sharath M Shankaranarayana, Keerthi Ram, Preejith S. P, Jayaraj Joseph, Mohanasankar Sivaprakasam
http://arxiv.org/abs/1902.04236v1

• [math.ST]Elicitability of Range Value at Risk
Tobias Fissler, Johanna F. Ziegel
http://arxiv.org/abs/1902.04489v1

• [math.ST]Maximum Likelihood Estimation for Learning Populations of Parameters
Ramya Korlakai Vinayak, Weihao Kong, Gregory Valiant, Sham M. Kakade
http://arxiv.org/abs/1902.04553v1

• [math.ST]Optimal BIBD-extended designs
Sera Aylin Cakiroglu, Peter J Cameron
http://arxiv.org/abs/1902.04496v1

• [math.ST]Quickest Change Detection in the Presence of a Nuisance Change
Tze Siong Lau, Wee Peng Tay
http://arxiv.org/abs/1902.03460v2

• [math.ST]Statistical inference with F-statistics when fitting simple models to high-dimensional data
Hannes Leeb, Lukas Steinberger
http://arxiv.org/abs/1902.04304v1

• [physics.soc-ph]Wikipedia and Digital Currencies: Interplay Between Collective Attention and Market Performance
Abeer ElBahrawy, Laura Alessandretti, Andrea Baronchelli
http://arxiv.org/abs/1902.04517v1

• [stat.AP]Achieving GWAS with Homomorphic Encryption
Jun Jie Sim, Fook Mun Chan, Shibin Chen, Benjamin Hong Meng Tan, Khin Mi Mi Aung
http://arxiv.org/abs/1902.04303v1

• [stat.AP]Bayesian Inference of a Finite Population Mean Under Length-Biased Sampling
Zhiqing Xu, Balgobin Nandram, Binod Manandhar
http://arxiv.org/abs/1902.04242v1

• [stat.AP]Non-Linear Non-Stationary Heteroscedasticity Volatility for Tracking of Jump Processes
Seyyed Hamed Fouladi, Ehsan Hajiramezanali
http://arxiv.org/abs/1902.04499v1

• [stat.AP]Winning the Big Data Technologies Horizon Prize: Fast and reliable forecasting of electricity grid traffic by identification of recurrent fluctuations
Jose M. G. Vilar
http://arxiv.org/abs/1902.04337v1

• [stat.ME]A quantile-based g-computation approach to addressing the effects of exposure mixtures
Alexander P. Keil, Jessie P. Buckley, Katie M. OBrien, Kelly K. Ferguson, Shanshan Zhao Alexandra J. White
http://arxiv.org/abs/1902.04200v1

• [stat.ME]Bayesian cumulative shrinkage for infinite factorizations
Sirio Legramanti, Daniele Durante, David B. Dunson
http://arxiv.org/abs/1902.04349v1

• [stat.ML]A Problem-Adaptive Algorithm for Resource Allocation
Xavier Fontaine, Shie Mannor, Vianney Perchet
http://arxiv.org/abs/1902.04376v1

• [stat.ML]Joint Training of Neural Network Ensembles
Andrew M. Webb, Charles Reynolds, Dan-Andrei Iliescu, Henry Reeve, Mikel Lujan, Gavin Brown
http://arxiv.org/abs/1902.04422v1

• [stat.ML]Learning interpretable continuous-time models of latent stochastic dynamical systems
Lea Duncker, Gergo Bohner, Julien Boussard, Maneesh Sahani
http://arxiv.org/abs/1902.04420v1

• [stat.ML]Sparse Feature Selection in Kernel Discriminant Analysis via Optimal Scoring
Alexander F. Lapanowski, Irina Gaynanova
http://arxiv.org/abs/1902.04248v1

• [stat.ML]The Cost of Privacy: Optimal Rates of Convergence for Parameter Estimation with Differential Privacy
T. Tony Cai, Yichen Wang, Linjun Zhang
http://arxiv.org/abs/1902.04495v1

• [stat.ML]Using Embeddings to Correct for Unobserved Confounding
Victor Veitch, Yixin Wang, David M. Blei
http://arxiv.org/abs/1902.04114v1

相关文章

网友评论

      本文标题:今日学术视野(2019.2.14)

      本文链接:https://www.haomeiwen.com/subject/dvhseqtx.html