美文网首页
j集成学习

j集成学习

作者: yayalisa小可乐 | 来源:发表于2018-11-04 00:01 被阅读0次

    from sklearn.ensemble import VotingClassifier 少数服从多数投票方法的集成分类器

    # 导入数据 iris鸢尾花数据

    import numpy as np

    import warnings ##提醒函数变动的,所以在视频演示中过滤掉

    from sklearn import datasets

    warnings.filterwarnings("ignore")

    iris = datasets.load_iris()

    X, y = iris.data[:, 1:3], iris.target

    from sklearn import cross_validation

    from sklearn.linear_model import LogisticRegression

    from sklearn.naive_bayes import GaussianNB

    from sklearn.ensemble import RandomForestClassifier

    np.random.seed(21)

    clf1 = LogisticRegression()

    clf2 = RandomForestClassifier()

    clf3 = GaussianNB()

    print('5折交叉验证:\n')

    ##zip函数中将对象中元素打包成元祖

    for clf, label in zip([clf1, clf2, clf3], ['逻辑回归', '随机森林', '朴素贝叶斯']):

        scores = cross_validation.cross_val_score(clf, X, y, cv=5, scoring='accuracy')

        print("准确率: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))

    from sklearn.ensemble import VotingClassifier

    np.random.seed(21)

    eclf1 = VotingClassifier(

        estimators=[('逻辑回归', clf1), ('随机森林', clf2), ('朴素贝叶斯', clf3)], voting='soft')

    scores = cross_validation.cross_val_score(eclf1, X, y, cv=5, scoring='accuracy')

    print("准确率: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))

    相关文章

      网友评论

          本文标题:j集成学习

          本文链接:https://www.haomeiwen.com/subject/dyywgftx.html