先附原文链接谁能做大数据工程师?
在国内,大数据的应用刚刚萌芽,“你很难期望有一个全才来完成整个链条上的所有环节。更多公司会根据自己已有的资源和短板,招聘能和现有团队互补的人才。”
于是每家公司对大数据工作的要求不尽相同:有的强调数据库编程、有的突出应用数学和统计学知识、有的则要求有咨询公司或投行相关的经验、有些是希望能找到懂得产品和市场的应用型人才。因此有了新的头衔和定义:数据挖掘工程师、大数据专家、数据研究员、用户分析专家等都是经常在国内公司里出现的Title,我们将其统称为“大数据工程师”。
在一个成熟的数据驱动型公司,“大数据工程师”往往是一个团队,它意味着从数据的收集、整理展现、分析和商业洞察、以至于市场转化的全过程。这个团队中可能包括数据工程师、分析师、产品专员、市场专员和商业决策者等角色,共同完成从原始数据到商业价值的转换。
行业要求:要有计算机编码能力、数学及统计学相关背景,当然如果能对一些特定领域或行业有比较深入的了解,对于其快速判断并抓准关键因素则更有帮助。不过阿里巴巴集团研究员薛贵荣强调,学历并不是最主要的因素,能有大规模处理数据的经验并且有喜欢在数据海洋中寻宝的好奇心会更适合这个工作。
优秀的大数据工程师要具备一定的逻辑分析能力,并能迅速定位某个商业问题的关键属性和决定因素。“他得知道什么是相关的,哪个是重要的,使用什么样的数据是最有价值的,如何快速找到每个业务最核心的需求。”因为大数据工程师的工作主要分为两种方式:由市场部驱动和由数据分析部门驱动,前者需要常常向产品经理了解开发需求,后者则需要找运营部了解数据模型实际转化的情况。
A 大数据工程师做什么?
用阿里巴巴集团研究员薛贵荣的话来说,大数据工程师就是一群“玩数据”的人,玩出数据的商业价值,让数据变成生产力。大数据和传统数据的最大区别在于,它是在线的、实时的,规模海量且形式不规整,无章法可循,因此“会玩”这些数据的人就很重要。
沈志勇认为如果把大数据想象成一座不停累积的矿山,那么大数据工程师的工作就是,“第一步,定位并抽取信息所在的数据集,相当于探矿和采矿。第二步,把它变成直接可以做判断的信息,相当于冶炼。最后是应用,把数据可视化等。”
B 需要具备的能力
1。数学及统计学相关的背景
就我们采访过的BAT三家互联网大公司来说,对于大数据工程师的要求都是希望是统计学和数学背景的硕士或博士学历。沈志勇认为,缺乏理论背景的数据工作者,更容易进入一个技能上的危险区域(Danger Zone)—一堆数字,按照不同的数据模型和算法总能捯饬出一些结果来,但如果你不知道那代表什么,就并不是真正有意义的结果,并且那样的结果还容易误导你。“只有具备一定的理论知识,才能理解模型、复用模型甚至创新模型,来解决实际问题。”
2.计算机编码能力
实际开发能力和大规模的数据处理能力是作为大数据工程师的一些必备要素。“因为许多数据的价值来自于挖掘的过程,你必须亲自动手才能发现金子的价值。”现在人们在社交网络上所产生的许多记录都是非结构化的数据,如何从这些毫无头绪的文字、语音、图像甚至视频中攫取有意义的信息就需要大数据工程师亲自挖掘。即使在某些团队中,大数据工程师的职责以商业分析为主,但也要熟悉计算机处理大数据的方式。
3.对特定应用领域或行业的知识
大数据工程师这个角色很重要的一点是,不能脱离市场,因为大数据只有和特定领域的应用结合起来才能产生价值。所以,在某个或多个垂直行业的经历能为应聘者积累对行业的认知,对于之后成为大数据工程师有很大帮助,因此这也是应聘这个岗位时较有说服力的加分项。
“他不能只是懂得数据,还要有商业头脑,不论对零售、医药、游戏还是旅游等行业,能就其中某些领域有一定的理解,最好还是与公司的业务方向一致的,”
C 大数据工程师的职业发展
薪酬待遇
作为IT类职业中的“大熊猫”,大数据工程师的收入待遇可以说达到了同类的顶级。“大数据时代的到来很突然,在国内发展势头激进,而人才却非常有限,现在完全是供不应求的状况。”在美国,大数据工程师平均每年薪酬高达17.5万美元,而据了解,在国内顶尖互联网类公司,同一个级别大数据工程师的薪酬可能要比其他职位高20%至30%,且颇受企业重视。
职业发展路径
网友评论