在分析TCGA数据库里的RNA-seq数据之前,先了解一下TCGA样本的id名称里的小秘密:参考文章:TCGA的样本id里藏着分组信息
根据文章里的内容,我查看了前一篇文章里我下载的count文件(利用R包TCGAbiolinks进行各种数据下载),打开是这样的:
列是样品名称,格式举例:TCGA.BA.A4IF.01A.11R.A266.07,这里面包含分组信息,比如说这个样品是肿瘤样品还是正常组织。分组信息是在这个id的第14-15位,01-09是tumor,10-29是normal。比如第一个样品,是01A,说明这个样品是个肿瘤样品。
OK,知道了哪里是分组信息,就可以开始进行操作了。
(一)准备R包
if(!require(stringr))install.packages('stringr')
if(!require(ggplotify))install.packages("ggplotify")
if(!require(patchwork))install.packages("patchwork")
if(!require(cowplot))install.packages("cowplot")
if(!require(DESeq2))BiocManager::install('DESeq2')
if(!require(edgeR))BiocManager::install('edgeR')
if(!require(limma))BiocManager::install('limma')
(二)载入数据
这里的数据是我上一篇文章下载好的count文件,不知道怎么下的请移步:利用R包TCGAbiolinks进行各种数据下载
#加载数据
> rm(list = ls())
> a= read.csv("TCGAbiolinks_HNSC_counts.csv")
> dim(a)
[1] 56512 547
#另外要关注一下,你的这个表达矩阵的第一列是样品还是基因名,如果第一列是基因名,要把第一列设置成为行名,不然只有的差异分析会出错
#将第一列换成行名
> row.names(a) <- a[, 1]
> a <- a[, -1]
NOTE:如果你没有check你的矩阵,导致了你的矩阵第一列是基因名,后面DESeq2运行会显示:“Error in DESeqDataSet(se, design = design, ignoreRank) : some values in assay are negative”这样的报错。
(三)将样品分组
> group_list <- ifelse(as.numeric(str_sub(colnames(a),14,15))<10,"tumor","normal")
> group_list <- factor(group_list,levels = c("normal","tumor"))
> table(group_list)
group_list
normal tumor
44 502
(四)差异分析
参考文章:TCGA-6.(转录组)差异分析三大R包及其结果对比
DESeq2方法做差异分析
> library(DESeq2)
> colData <- data.frame(row.names =colnames(a),
condition=group_list) #condition是你的分组信息
> dds <- DESeqDataSetFromMatrix(
countData = a,
colData = colData,
design = ~ condition)
> dds <- DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
-- replacing outliers and refitting for 3594 genes
-- DESeq argument 'minReplicatesForReplace' = 7
-- original counts are preserved in counts(dds)
estimating dispersions
fitting model and testing
# 两两比较
> res <- results(dds, contrast = c("condition",rev(levels(group_list))))
> resOrdered <- res[order(res$pvalue),] # 按照P值排序
> DEG <- as.data.frame(resOrdered)
> head(DEG)
baseMean log2FoldChange lfcSE stat pvalue padj
ENSG00000231887 233.5976 -7.414328 0.3208937 -23.10525 4.100424e-118 1.594778e-113
ENSG00000107159 1962.6861 5.849713 0.2969441 19.69971 2.168630e-86 4.217225e-82
ENSG00000106351 1273.1916 -2.371015 0.1206022 -19.65980 4.765762e-86 6.178493e-82
ENSG00000070081 2922.2020 -2.145545 0.1094426 -19.60430 1.420977e-85 1.381652e-81
ENSG00000102547 434.7033 -2.210238 0.1154164 -19.15013 9.655057e-82 7.510283e-78
ENSG00000151882 882.7880 -4.178352 0.2216513 -18.85102 2.882343e-79 1.868383e-75
去除NA值:
> DEG <- na.omit(DEG)
在DEG里添加一列名为change列,标记基因上调下调:
> logFC_cutoff <- with(DEG,mean(abs(log2FoldChange)) + 2*sd(abs(log2FoldChange)) )
> logFC_cutoff
[1] 2.610411
> DEG$change = as.factor(
+ ifelse(DEG$pvalue < 0.05 & abs(DEG$log2FoldChange) > logFC_cutoff,
+ ifelse(DEG$log2FoldChange > logFC_cutoff ,'UP','DOWN'),'NOT')
+ )
> head(DEG)
baseMean log2FoldChange lfcSE stat pvalue padj change
ENSG00000231887 233.5976 -7.414328 0.3208937 -23.10525 4.100424e-118 1.594778e-113 DOWN
ENSG00000107159 1962.6861 5.849713 0.2969441 19.69971 2.168630e-86 4.217225e-82 UP
ENSG00000106351 1273.1916 -2.371015 0.1206022 -19.65980 4.765762e-86 6.178493e-82 NOT
ENSG00000070081 2922.2020 -2.145545 0.1094426 -19.60430 1.420977e-85 1.381652e-81 NOT
ENSG00000102547 434.7033 -2.210238 0.1154164 -19.15013 9.655057e-82 7.510283e-78 NOT
ENSG00000151882 882.7880 -4.178352 0.2216513 -18.85102 2.882343e-79 1.868383e-75 DOWN
> View(DEG)
> DESeq2_DEG <- DEG
最后看一下用这个方法做差异分析,上调和下调的基因有多少:
> table(DEG$change)
DOWN NOT UP
929 36955 1009
edgeR方法做差异分析
> library(edgeR)
> dge <- DGEList(counts=a,group=group_list)
> dge$samples$lib.size <- colSums(dge$counts)
> dge <- calcNormFactors(dge)
> design <- model.matrix(~0+group_list)
> rownames(design)<-colnames(dge)
> colnames(design)<-levels(group_list)
> dge <- estimateGLMCommonDisp(dge,design)
> dge <- estimateGLMTrendedDisp(dge, design)
> dge <- estimateGLMTagwiseDisp(dge, design)
> fit <- glmFit(dge, design)
> fit2 <- glmLRT(fit, contrast=c(-1,1))
> DEG2=topTags(fit2, n=nrow(a))
> DEG2=as.data.frame(DEG2)
> logFC_cutoff2 <- with(DEG2,mean(abs(logFC)) + 2*sd(abs(logFC)) )
> DEG2$change = as.factor(
+ ifelse(DEG2$PValue < 0.05 & abs(DEG2$logFC) > logFC_cutoff2,
+ ifelse(DEG2$logFC > logFC_cutoff2 ,'UP','DOWN'),'NOT')
+ )
> head(DEG2)
logFC logCPM LR PValue FDR change
ENSG00000170369 -9.842798 4.4837048 1227.908 5.248913e-269 2.966266e-264 DOWN
ENSG00000162877 -6.470581 -0.1480235 1215.091 3.203213e-266 9.050998e-262 DOWN
ENSG00000231887 -9.129113 4.9924958 1140.670 4.781111e-250 9.006338e-246 DOWN
ENSG00000131686 -9.939181 4.2888099 1135.359 6.822362e-249 9.638633e-245 DOWN
ENSG00000101441 -10.903794 5.4644612 1059.704 1.893018e-232 2.139565e-228 DOWN
ENSG00000160349 -10.982631 6.4426001 1030.047 5.287725e-226 4.980332e-222 DOWN
看一下用edgeR方法,上调和下调基因的数量:
> table(DEG2$change)
DOWN NOT UP
1188 53914 1410
> edgeR_DEG <- DEG2
limma-voom方法做差异分析
> library(limma)
> design <- model.matrix(~0+group_list)
> colnames(design)=levels(group_list)
> rownames(design)=colnames(a)
> dge <- DGEList(counts=a)
> dge <- calcNormFactors(dge)
> logCPM <- cpm(dge, log=TRUE, prior.count=3)
> v <- voom(dge,design, normalize="quantile")
> fit <- lmFit(v, design)
> constrasts = paste(rev(levels(group_list)),collapse = "-")
> cont.matrix <- makeContrasts(contrasts=constrasts,levels = design)
> fit3=contrasts.fit(fit,cont.matrix)
> fit3=eBayes(fit3)
> DEG3 = topTable(fit3, coef=constrasts, n=Inf)
> DEG3 = na.omit(DEG3)
> logFC_cutoff3 <- with(DEG3,mean(abs(logFC)) + 2*sd(abs(logFC)) )
> DEG3$change = as.factor(
+ ifelse(DEG3$P.Value < 0.05 & abs(DEG3$logFC) > logFC_cutoff3,
+ ifelse(DEG3$logFC > logFC_cutoff3 ,'UP','DOWN'),'NOT')
+ )
> head(DEG3)
logFC AveExpr t P.Value adj.P.Val B change
ENSG00000203740 3.394627 -3.404611 28.73533 3.090631e-111 1.746578e-106 243.1880 UP
ENSG00000096006 -8.588036 -1.083975 -27.14114 2.835110e-103 8.010887e-99 224.8165 DOWN
ENSG00000260976 3.045123 -3.341040 27.00751 1.329154e-102 2.503772e-98 223.4002 UP
ENSG00000181092 -7.489810 -4.776791 -24.73134 4.130357e-91 5.835368e-87 196.2190 DOWN
ENSG00000198478 -4.043231 3.231204 -24.35482 3.353473e-89 3.790229e-85 192.7091 DOWN
ENSG00000181355 4.163352 -2.440333 24.29635 6.639596e-89 6.253614e-85 191.7566 UP
> limma_voom_DEG <- DEG3
> table(DEG3$change)
DOWN NOT UP
1593 53742 1177
(五)保存三种方法得到的矩阵
> save(DESeq2_DEG,edgeR_DEG,limma_voom_DEG,group_list,file = "DEG.Rdata")
(六)热图
下面得到了三个方法得来了矩阵,就可以可视化了。教程里用的包draw_heatmap在我的R版本上安装不了,所以我用的是pheatmap画的热图。
#这一步是定义后面画的热图是三个矩阵里change那一列上调和下调的基因,不包括没变化的基因
> cg1 = rownames(DESeq2_DEG)[DESeq2_DEG$change !="NOT"]
> cg2 = rownames(edgeR_DEG)[edgeR_DEG$change !="NOT"]
> cg3 = rownames(limma_voom_DEG)[limma_voom_DEG$change !="NOT"]
> library(pheatmap)
> library(RColorBrewer)
#定义热图的颜色
> color<- colorRampPalette(c('#436eee','white','#EE0000'))(100)
#下面画第一个DESeq2矩阵的热图
> mat=a[cg1,]
> n=t(scale(t(mat)))
> n[n>1]=1
> n[n< -1]= -1
> ac=data.frame(group=group_list)
> rownames(ac)=colnames(mat)
> ht1 <- pheatmap(n,show_rownames = F,show_colnames = F,
cluster_rows = F,cluster_cols = T,
annotation_col = ac,color=color)
#下面画edgeR矩阵的热图
> mat2=a[cg2,]
> n2=t(scale(t(mat2)))
> n2[n2 > 1]=1
> n2[n2< -1]= -1
> ht2 <- pheatmap(n2,show_rownames = F,show_colnames = F,
cluster_rows = F,cluster_cols = T,
annotation_col = ac,color=color)
#下面画limma矩阵的热图
> mat3=a[cg3,]
> n3=t(scale(t(mat3)))
> n3[n3 > 1]=1
> n3[n3< -1]= -1
> ht3 <- pheatmap(n3,show_rownames = F,show_colnames = F,
cluster_rows = F,cluster_cols = T,
annotation_col = ac,color=color)
DESeq2矩阵热图
edgeR矩阵热图
limma矩阵热图
(七)火山图
> library(EnhancedVolcano)
> library(airway)
> v1=EnhancedVolcano(DESeq2_DEG,
lab = rownames(DESeq2_DEG),
x = 'log2FoldChange',
y = 'pvalue',
xlim = c(-8, 8),
title = 'DESeq2_DEG',
pCutoff = 10e-17,
FCcutoff = 2.5,
transcriptPointSize = 1.0,
transcriptLabSize = 3.0,
col=c('black', 'blue', 'green', 'red1'),
colAlpha = 1,
legend=c('NS','Log2 fold-change','P value',
'P value & Log2 fold-change'),
legendPosition = 'right',
legendLabSize = 10,
legendIconSize = 3.0,
)
> v2=EnhancedVolcano(edgeR_DEG,
lab = rownames(edgeR_DEG),
x = 'logFC',
y = 'PValue',
xlim = c(-8, 8),
title = 'edgeR_DEG',
pCutoff = 10e-17,
FCcutoff = 2.5,
transcriptPointSize = 1.0,
transcriptLabSize = 3.0,
col=c('black', 'blue', 'green', 'red1'),
colAlpha = 1,
legend=c('NS','LogFC','P value',
'P value & LogFC'),
legendPosition = 'right',
legendLabSize = 10,
legendIconSize = 3.0,
)
> v3=EnhancedVolcano(limma_voom_DEG,
lab = rownames(limma_voom_DEG),
x = 'logFC',
y = 'P.Value',
xlim = c(-8, 8),
title = 'limma_voom_DEG',
pCutoff = 10e-17,
FCcutoff = 2.5,
transcriptPointSize = 1.0,
transcriptLabSize = 3.0,
col=c('black', 'blue', 'green', 'red1'),
colAlpha = 1,
legend=c('NS','LogFC','P value',
'P value & LogFC'),
legendPosition = 'right',
legendLabSize = 10,
legendIconSize = 3.0,
)
把三个火山图组合起来:
#multiplot function
> multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) {
require(grid)
# Make a list from the ... arguments and plotlist
plots <- c(list(...), plotlist)
numPlots = length(plots)
# If layout is NULL, then use 'cols' to determine layout
if (is.null(layout)) {
# Make the panel
# ncol: Number of columns of plots
# nrow: Number of rows needed, calculated from # of cols
layout <- matrix(seq(1, cols * ceiling(numPlots/cols)),
ncol = cols, nrow = ceiling(numPlots/cols))
}
if (numPlots==1) {
print(plots[[1]])
} else {
# Set up the page
grid.newpage()
pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout))))
# Make each plot, in the correct location
for (i in 1:numPlots) {
# Get the i,j matrix positions of the regions that contain this subplot
matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE))
print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row,
layout.pos.col = matchidx$col))
}
}
}
> multiplot(v1,v2,v3,cols=3)
(八)三个不同方法得到的矩阵的交集可视化
上面的可视化是用三个矩阵分别画出的热图和火山图,下面要把这三个矩阵里上调和下调的基因的交集提出来,然后再进行可视化:
> UP=function(df){
rownames(df)[df$change=="UP"]
}
> DOWN=function(df){
rownames(df)[df$change=="DOWN"]
}
> up = intersect(intersect(UP(DESeq2_DEG),UP(edgeR_DEG)),UP(limma_voom_DEG))
> down = intersect(intersect(DOWN(DESeq2_DEG),DOWN(edgeR_DEG)),DOWN(limma_voom_DEG))
> mat_total=a[c(up,down),]
> n4=t(scale(t(mat_total)))
> n4[n4 >1]=1
> n4[n4< -1]= -1
> ac=data.frame(group=group_list)
> rownames(ac)=colnames(mat_total)
> ht_combine <- pheatmap(n4,show_rownames = F,show_colnames = F,
cluster_rows = F,cluster_cols = T,
annotation_col = ac,color=color)
三个矩阵的交集画韦恩图:
#上调、下调基因分别画维恩图
> up.plot <- venn(list(UP(DESeq2_DEG),UP(edgeR_DEG),UP(limma_voom_DEG)))
> down.plot <- venn(list(DOWN(DESeq2_DEG),DOWN(edgeR_DEG),DOWN(limma_voom_DEG)))
三个矩阵里上调基因的交集,一共533个
三个矩阵里下调基因的交集,一共630个
网友评论