美文网首页生信分析流程TCGA数据分析
可变剪切在癌症中的研究

可变剪切在癌症中的研究

作者: 组学大讲堂 | 来源:发表于2019-02-26 09:22 被阅读48次

    之前给大家分享过:下载TCGA数据库内转录组/LncRNA等数据,通过筛选差异基因进行生存分析,构建预后模型的文章思路,感兴趣的可以点下以下三个链接查看详细内容。

    1.1分钟给你5分的SCI论文思路!要不要?

    2.TCGA-人类癌症数据库差异表达基因挖掘课程

    3.再挖TCGA,发篇SCI

    那么除了筛选差异基因进行此类分析外,还有其他好的思路吗?答案是肯定的;可变剪切是基因转录时,通过组合不同的外显子,形成不同转录本的过程,在生命的信息传递过程中发挥着重要的作用;今天就给大家分享一篇利用TCGA数据库癌症转录组数据可变剪切事件进行生存分析,构建预后模型分析的文章,目前可变剪切在癌症的研究里还不是很多,所以此类选材较为新颖,是一个很不错的选材思路!

    此篇文章是2018年11月发表在医学2区期刊Frontiers in Oncology(IF=4.416)上,作者共下载了330个结肠癌转录组数据,深入分析了与结肠癌预后相关的关键可变剪切事件!

    研究思路

    从TCGA数据库下载转录组数据,采用SpliceSeq进行可变剪切分析

    针对可变剪切事件,进行单因素的Cox生存分析

    针对显著的单因素可变剪接事件,进行多因素的Cox生存分析

    构建预后预测模型,并进行性能评估

    剪切因子和剪切事件进行关联分析,筛选出重要的剪切因子

    可变剪切分析

    采用SplicSeq软件对TCGA中的转录组数据进行可变剪切分析,分别统计可变受体位点(AA)、可变供体位点(AD)、可变启动子(AP)、可变终止子(AT)、内含子保留(RI)、外显子跳跃(ES)、外显子互斥(ME)等7种可变剪切形式的可变剪切事件。其中外显子跳跃类型的可变剪切事件最多。统计图如下:

    单因素生存分析

    7种类型的可变剪切事件,分别进行单因素的Cox生存分析,筛选出显著相关的可变剪切事件,并将发生该可变剪切事件的基因筛选出来。下图为7类可变剪切事件对应的风险比率。

    多因素生存分析

    针对这7类可变剪切事件,分别基于该类中显著的可变剪切事件,构建预后预测模型,再基于中位数划分,进行KM生存分析。

    为了评估预后模型的性能,采用ROC曲线进行比较分析;基于所有可变剪切事件构建的预测模型最优。

    可变剪切显著相关基因的互作分析

    由于一个基因可能存在多种类型的可变剪切形式,分别统计含有不同类型可变剪切形式基因的数量。

    基于这些生存显著相关可变剪接事件对应的基因,进行互作网络分析,一些关键基因与其他的基因存在相互作用,可能存在重要的作用。

    可变剪切因子分析

    针对显著的可变剪切事件,与剪切因子的表达量进行相关性分析。一些剪切因子与高风险的剪切事件相关,如:HNRNPAB,一些则与低风险比例的剪切事件相关,如:HSPA7。

    文章亮点

    本文从可变剪切入手,进行生存分析,构建预后模型,其研究对象具有一定的新颖性。在可变剪切分析中,进一步研究其上游调控的剪切因子,下游的蛋白互作,让整个的分析内容比较深入。而且本文完全是生物信息的数据挖掘,具有很强的可模仿性,值得其他类癌症研究借鉴!

    更多生物信息课程:

    1. 文章越来越难发?是你没发现新思路,基因家族分析发2-4分文章简单快速,学习链接:基因家族分析实操课程基因家族文献思路解读

    2. 转录组数据理解不深入?图表看不懂?点击链接学习深入解读数据结果文件,学习链接:转录组(有参)结果解读转录组(无参)结果解读

    3. 转录组数据深入挖掘技能-WGCNA,提升你的文章档次,学习链接:WGCNA-加权基因共表达网络分析

    4. 转录组数据怎么挖掘?学习链接:转录组标准分析后的数据挖掘转录组文献解读

    5. 微生物16S/ITS/18S分析原理及结果解读OTU网络图绘制cytoscape与网络图绘制课程

    6. 生物信息入门到精通必修基础课,学习链接:linux系统使用perl入门到精通perl语言高级R语言画图

    7. 医学相关数据挖掘课程,不用做实验也能发文章,学习链接:TCGA-差异基因分析GEO芯片数据挖掘GSEA富集分析课程TCGA临床数据生存分析TCGA-转录因子分析TCGA-ceRNA调控网络分析

    8.其他课程链接:二代测序转录组数据自主分析NCBI数据上传二代测序数据解读

    相关文章

      网友评论

        本文标题:可变剪切在癌症中的研究

        本文链接:https://www.haomeiwen.com/subject/gevoyqtx.html