![](https://img.haomeiwen.com/i10349654/670e735aeff34127.png)
一、什么是递归?
1.递归是一种非常高效、简洁的编码技巧,一种应用非常广泛的算法,比如DFS深度优先搜索、前中后序二叉树遍历等都是使用递归。
2.方法或函数调用自身的方式称为递归调用,调用称为递,返回称为归。
3.基本上,所有的递归问题都可以用递推公式来表示,比如
f(n) = f(n-1) + 1;
f(n) = f(n-1) + f(n-2);
f(n)=n*f(n-1);
二、为什么使用递归?递归的优缺点?
1.优点:代码的表达力很强,写起来简洁。
2.缺点:空间复杂度高、有堆栈溢出风险、存在重复计算、过多的函数调用会耗时较多等问题。
三、什么样的问题可以用递归解决呢?
一个问题只要同时满足以下3个条件,就可以用递归来解决:
1.问题的解可以分解为几个子问题的解。何为子问题?就是数据规模更小的问题。
2.问题与子问题,除了数据规模不同,求解思路完全一样
3.存在递归终止条件
四、如何实现递归?
1.递归代码编写
写递归代码的关键就是找到如何将大问题分解为小问题的规律,并且基于此写出递推公式,然后再推敲终止条件,最后将递推公式和终止条件翻译成代码。
2.递归代码理解
对于递归代码,若试图想清楚整个递和归的过程,实际上是进入了一个思维误区。
开篇问题
long findRootReferrerId(long actorId) {
Long referrerId = select referrer_id from [table] where actor_id = actorId;
if (referrerId == null) return actorId;
return findRootReferrerId(referrerId);
}
那该如何理解递归代码呢?如果一个问题A可以分解为若干个子问题B、C、D,你可以假设子问题B、C、D已经解决。而且,你只需要思考问题A与子问题B、C、D两层之间的关系即可,不需要一层层往下思考子问题与子子问题,子子问题与子子子问题之间的关系。屏蔽掉递归细节,这样子理解起来就简单多了。
因此,理解递归代码,就把它抽象成一个递推公式,不用想一层层的调用关系,不要试图用人脑去分解递归的每个步骤。
五、递归常见问题及解决方案
1.警惕堆栈溢出:可以声明一个全局变量来控制递归的深度,从而避免堆栈溢出。
2.警惕重复计算:通过某种数据结构来保存已经求解过的值,从而避免重复计算。
![](https://img.haomeiwen.com/i10349654/b8fba77be290a137.png)
六、如何将递归改写为非递归代码?
笼统的讲,所有的递归代码都可以改写为迭代循环的非递归写法。如何做?抽象出递推公式、初始值和边界条件,然后用迭代循环实现。
七、实例
爬楼梯问题
function climbStairs(n) {
if (n === 1) {
return 1;
}
var dp = new Array(n);
dp[0] = 0;
dp[1] = 1;
dp[2] = 2;
for (let i = 3; i <= n; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
console.log(climbStairs(4));
参考资料:
1.有了四步解题法模板,再也不害怕动态规划!(看不懂算我输)
2.还有程序员天真地以为”尾递归“真的可以避免堆栈溢出!
网友评论