指令周期
1.Fetch(取得指令),从 PC 寄存器里找到对应的指令地址,根据指令地址从内存里把具体的指令,加载到指令寄存器中,然后把 PC 寄存器自增,好在未来执行下一条指令。
2.Decode(指令译码),根据指令寄存器里面的指令,解析成要进行什么样的操作,是 R、I、J 中的哪一种指令,具体要操作哪些寄存器、数据或者内存地址。
3.Execute(执行指令),也就是实际运行对应的 R、I、J 这些特定的指令,进行算术逻辑操作、数据传输或者直接的地址跳转。
处理器单元
第一类叫操作元件,也叫组合逻辑元件(Combinational Element),它们的功能就是在特定的输入下,根据下面的组合电路的逻辑,生成特定的输出。
第二类叫存储元件,也有叫状态元件(State Element)的。比如我们在计算过程中需要用到的寄存器,无论是通用寄存器还是状态寄存器,其实都是存储元件。
CPU组成
第一,ALU ,它实际就是一个没有状态的,根据输入计算输出结果的第一个电路。
第二,一个能够进行状态读写的电路元件,也就是我们的寄存器。我们需要有一个电路,能够存储到上一次的计算结果。
第三,一个“自动”的电路,按照固定的周期,不停地实现 PC 寄存器自增,自动地去执行“Fetch - Decode - Execute“的步骤。
第四,一个“译码”的电路。无论是对于指令进行 decode,还是对于拿到的内存地址去获取对应的数据或者指令,我们都需要通过一个电路找到对应的数据。这个对应的自然就是“译码器”的电路了。
单指令周期处理器
一条 CPU 指令的执行,是由“取得指令- 指令译码- 执行指令 ”这样三个步骤组成的。这个执行过程,至少需要花费一个时钟周期。因为在取指令的时候,我们需要通过时钟周期的信号,来决定计数器的自增。不同指令的执行时间不同,但是我们需要让所有指令都在一个时钟周期内完成,那就只好把时钟周期和执行时间最长的那个指令设成一样。
在单指令周期处理器里面,无论是执行一条用不到 ALU 的无条件跳转指令,还是一条计算起来电路特别复杂的浮点数乘法运算,我们都等要等满一个时钟周期。在这个情况下,虽然 CPI 能够保持在 1,但是我们的时钟频率却没法太高。因为太高的话,有些复杂指令没有办法在一个时钟周期内运行完成。那么在下一个时钟周期到来,开始执行下一条指令的时候,前一条指令的执行结果可能还没有写入到寄存器里面。那下一条指令读取的数据就是不准确的,就会出现错误。
现代处理器的流水线设计
图片.png不用把时钟周期设置成整条指令执行的时间,而是拆分成完成一个一个小步骤需要的时间。同时,每一个阶段的电路在完成对应的任务之后,也不需要等待整个指令执行完成,而是可以直接执行下一条指令的对应阶段。如果某一个操作步骤的时间太长,我们就可以考虑把这个步骤,拆分成更多的步骤,让所有步骤需要执行的时间尽量都差不多长。
如果我们把一个指令拆分成“取指令 - 指令译码 - 执行指令”这样三个部分,那这就是一个三级的流水线。如果我们进一步把“执行指令”拆分成“ALU 计算(指令执行)- 内存访问 - 数据写回”,那么它就会变成一个五级的流水线。
现代的 ARM 或者 Intel 的 CPU,流水线级数都已经到了 14 级。
网友评论