批处理MP4转换为yuv,并保存width 和 height信息为mat文件
import os
import cv2
from os import path
import numpy as np
import scipy.io as scio
from ffmpy3 import FFmpeg
from subprocess import PIPE
Path_orig = 'G:/CRSR/test_seq/'
Path_train = 'G:/CRSR/train_yuv/'
Path_validation = 'G:/CRSR/validation_yuv/'
wdr = path.normpath(Path_orig)
subwdr = os.listdir(wdr)
widthList_train=[]
heightList_train=[]
widthList_validation=[]
heightList_validation=[]
count = 0
for videoClass in subwdr:
videoList = os.listdir(Path_orig+videoClass)
for name in videoList:
count =count+1
name_path=Path_orig+videoClass+'/'+name
cap=cv2.VideoCapture(name_path)
width = int(cap.get(3))
height = int(cap.get(4))
fps = int(cap.get(5))
framenum = int(cap.get(7))
yuvname = str(count)+videoClass + '_'+str(width) +'x'+str(height)+'_'+str(framenum)+'_'+str(fps)+'_'+'.yuv'
if name==videoList[-1]:
widthList_validation.append(width)
heightList_validation.append(height)
ff = FFmpeg(inputs={name_path: None},outputs={Path_validation+yuvname: '-pix_fmt yuv420p -vsync passthrough'})
else:
widthList_train.append(width)
heightList_train.append(height)
ff = FFmpeg(inputs={name_path: None},outputs={Path_train+yuvname:'-pix_fmt yuv420p -vsync passthrough'})
# print(ff.cmd)
ff.run(stdout=PIPE,stderr=PIPE)
# print(yuvname)
scio.savemat('G:/CRSR/para.mat', {'widthList_train': np.array(widthList_train),'heightList_train':np.array(heightList_train),\
'widthList_validation':np.array(widthList_validation),'heightList_validation':np.array(heightList_validation)})
网友评论