美文网首页
Python functools 模块

Python functools 模块

作者: __XY__ | 来源:发表于2019-11-19 23:26 被阅读0次

    functools 是 Python 中很简单但也很重要的模块,主要是一些 Python 高阶函数相关的函数。 该模块的内容并不多,看官方文档 也就知道了。

    说到高阶函数,这是函数式编程范式中很重要的一个概念,简单地说, 就是一个可以接受函数作为参数或者以函数作为返回值的函数,因为 Python 中函数是一类对象, 因此很容易支持这样的函数式特性。

    functools 模块中函数只有 cmp_to_key、partial、reduce、total_ordering、 update_wrapper、wraps 这几个:

    被发配边疆的 reduce

    这个 functools.reduce 就是 Python 2 内建库中的 reduce,它之所以出现在这里就是因为 Guido 的独裁,他并不喜欢函数式编程中的“map-reduce”概念,因此打算将 map 和 reduce 两个函数移出内建函数库,最后在社区的强烈反对中将 map 函数保留在了内建库中, 但是 Python 3 内建的 map 函数返回的是一个迭代器对象,而 Python 2 中会 eagerly 生成一个 list,使用时要多加注意。

    偏函数 partial 和 partialmethod

    函数式编程中有个很重要的概念叫做柯里化,简单地(虽然并不准确)说,就是这样地效果:

    def add(x, y):
        return x + y
    
    add_y = add(num_y)  # add_y 是一个函数
    add_y(num_x)        # 结果是 num_x+num_y
    

    当然,上面只是伪代码,在 Python 中你可以使用 partial 函数实现类似的效果:

    from functools import partial
    
    def add(x, y):
        return x + y
    
    add_y = partial(add, 3)  # add_y 是一个函数
    add_y(4)                 # 结果是 7
    

    partialmethod 是 Python 3.4 中新引入的装饰器,作用基本类似于 partial, 不过仅作用于方法。举个例子就很容易明白:

    class Cell(object):
        def __init__(self):
            self._alive = False
        @property
        def alive(self):
            return self._alive
        def set_state(self, state):
            self._alive = bool(state)
        set_alive = partialmethod(set_state, True)
        set_dead = partialmethod(set_state, False)
    
    c = Cell()
    c.alive         # False
    c.set_alive()
    c.alive         # True
    

    在 Python 2 中使用 partialmethod 可以这样定义:

    # Code from https://gist.github.com/carymrobbins/8940382
    from functools import partial
    
    class partialmethod(partial):
        def __get__(self, instance, owner):
            if instance is None:
                return self
            return partial(self.func, instance,
                           *(self.args or ()), **(self.keywords or {}))
    

    装饰器相关

    说到“接受函数为参数,以函数为返回值”,在 Python 中最常用的当属装饰器了。 functools 库中装饰器相关的函数是 update_wrapper、wraps,还搭配 WRAPPER_ASSIGNMENTS 和 WRAPPER_UPDATES 两个常量使用,作用就是消除 Python 装饰器的一些负面作用。

    wraps
    例:

    def decorator(func):
        def wrapper(*args, **kwargs):
            return func(*args, **kwargs)
        return wrapper
    
    @decorator
    def add(x, y):
        return x + y
    
    add     # <function __main__.wrapper>
    

    可以看到被装饰的函数的名称,也就是函数的 name 属性变成了 wrapper, 这就是装饰器带来的副作用,实际上add 函数整个变成了 decorator(add),而 wraps 装饰器能消除这些副作用:

    def decorator(func):
        @wraps(func)
        def wrapper(*args, **kwargs):
            return func(*args, **kwargs)
        return wrapper
    
    @decorator
    def add(x, y):
        return x + y
    
    add     # <function __main__.add>
    

    会更正的属性定义在 WRAPPER_ASSIGNMENTS 中:

    >>> functools.WRAPPER_ASSIGNMENTS
    ('__module__', '__name__', '__doc__')
    >>> functools.WRAPPER_UPDATES
    ('__dict__',)
    

    update_wrapper

    update_wrapper 的作用与 wraps 类似,不过功能更加强大,换句话说,wraps 其实是 update_wrapper 的特殊化,实际上 wraps(wrapped) 相当于 partial(update_wrapper, wrapped=wrapped, **kwargs)。

    因此,上面的代码可以用 update_wrapper 重写如下:

    def decorator(func):
        def wrapper(*args, **kwargs):
            return func(*args, **kwargs)
        return update_wrapper(wrapper, func)
    

    相关文章

      网友评论

          本文标题:Python functools 模块

          本文链接:https://www.haomeiwen.com/subject/ehknictx.html