在InnoDB中,表都是根据主键顺序以索引的形式存放的,这种存储方式的表称为索引组织表。InnoDB使用了B+树索引模型,所以数据都是存储在B+树中的。
每一个索引在InnoDB里面对应一棵B+树。
假设,我们有一个主键列为ID的表,表中有字段k,并且在k上有索引。
这个表的建表语句是:
mysql> create table T(
id int primary key,
k int not null,
name varchar(16),
index (k))engine=InnoDB;
表中R1~R5的(ID,k)值分别为(100,1)、(200,2)、(300,3)、(500,5)和(600,6),两棵树的示例示意图如下
image.png
从图中不难看出,根据叶子节点的内容,索引类型分为主键索引和非主键索引。
主键索引的叶子节点存的是整行数据。在InnoDB里,主键索引也被称为聚簇索引(clustered index)。
非主键索引的叶子节点内容是主键的值。在InnoDB里,非主键索引也被称为二级索引(secondary index)或普通索引。
根据上面的索引结构说明,我们来讨论一个问题:基于主键索引和普通索引的查询有什么区别?
- 如果语句是select * from T where ID=500,即主键查询方式,则只需要搜索ID这棵B+树;
- 如果语句是select * from T where k=5,即普通索引查询方式,则需要先搜索k索引树,得到ID的值为500,再到ID索引树搜索一次。这个过程称为回表。
也就是说,基于非主键索引的查询需要多扫描一棵索引树。这也是为什么说我们要尽量使用主键查询了。
索引维护
B+树为了维护索引有序性,在插入新值的时候需要做必要的维护。以上面这个图为例,如果插入新的行ID值为700,则只需要在R5的记录后面插入一个新记录。如果新插入的ID值为400,就相对麻烦了,需要逻辑上挪动后面的数据,空出位置。
而更糟的情况是,如果R5所在的数据页已经满了,根据B+树的算法,这时候需要申请一个新的数据页,然后挪动部分数据过去。这个过程称为页分裂。在这种情况下,性能自然会受影响。
除了性能外,页分裂操作还影响数据页的利用率。原本放在一个页的数据,现在分到两个页中,整体空间利用率降低大约50%。
当然有分裂就有合并。当相邻两个页由于删除了数据,利用率很低之后,会将数据页做合并。合并的过程,可以认为是分裂过程的逆过程。
基于上面的索引维护过程说明,我们来讨论一个案例:
你可能在一些建表规范里面见到过类似的描述,要求建表语句里一定要有自增主键。当然事无绝对,我们来分析一下哪些场景下应该使用自增主键,而哪些场景下不应该。
自增主键是指自增列上定义的主键,在建表语句中一般是这么定义的:
NOT NULL PRIMARY KEY AUTO_INCREMENT
插入新记录的时候可以不指定ID的值,系统会获取当前ID最大值加1作为下一条记录的ID值。
也就是说,自增主键的插入数据模式,正符合了我们前面提到的递增插入的场景。每次插入一条新记录,都是追加操作,都不涉及到挪动其他记录,也不会触发叶子节点的分裂。
而有业务逻辑的字段做主键,则往往不容易保证有序插入,这样写数据成本相对较高。
除了考虑性能外,我们还可以从存储空间的角度来看。假设你的表中确实有一个唯一字段,比如字符串类型的身份证号,那应该用身份证号做主键,还是用自增字段做主键呢?
由于每个非主键索引的叶子节点上都是主键的值。如果用身份证号做主键,那么每个二级索引的叶子节点占用约20个字节,而如果用整型做主键,则只要4个字节,如果是长整型(bigint)则是8个字节。
显然,主键长度越小,普通索引的叶子节点就越小,普通索引占用的空间也就越小。
所以,从性能和存储空间方面考量,自增主键往往是更合理的选择。
有没有什么场景适合用业务字段直接做主键的呢?还是有的。比如,有些业务的场景需求是这样的:
- 只有一个索引;
- 该索引必须是唯一索引。
你一定看出来了,这就是典型的KV场景。
由于没有其他索引,所以也就不用考虑其他索引的叶子节点大小的问题。
这时候就要优先考虑“尽量使用主键查询”原则,直接将这个索引设置为主键,就可以避免每次查询需要搜索两棵树。
——学自极客时间
网友评论