美文网首页
单细胞转录组/AverageExpression平均表达是个啥

单细胞转录组/AverageExpression平均表达是个啥

作者: BBio | 来源:发表于2021-11-13 13:34 被阅读0次

AverageExpression

gzh:BBio

Seurat中用于计算cluster基因平均表达值的函数,为啥这个结果和FindMarkers中差异倍数avg_logFC有出入呢?

#计算每个cluster中基因的平均表达
df <- AverageExpression(pbmc, verbose=F)$RNAhead(df)
#0          1         2
# MS4A1     0.000000   2.083443  171.6152
# CD79B    10.814657  17.548842  152.1344
# CD79A     0.000000  11.618333  215.0869
# HLA-DRA  37.105857 405.850522 1158.0852
# TCL1A     0.000000   3.463203  142.0748
# HLA-DQB1  3.968254  45.353183  169.2762

AverageExpression源码

getAnywhere('AverageExpression')
# fxn.average <- switch(EXPR = slot, data = function(x) {
#         rowMeans(x = expm1(x = x))
#     }, rowMeans)# for (j in levels(x = Idents(object))) {
#             temp.cells <- WhichCells(object = object, idents = j)
#             features.assay <- unique(x = intersect(x = features.assay, 
#                 y = rownames(x = data.use)))
#             if (length(x = temp.cells) == 1) {
#                 data.temp <- (data.use[features.assay, temp.cells])
#                 if (slot == "data") {
#                   data.temp <- expm1(x = data.temp)
#                 }
#             }
#             if (length(x = temp.cells) > 1) {
#                 data.temp <- fxn.average(data.use[features.assay,
 #                   temp.cells, drop = FALSE])
#             }
#             data.all[[j]] <- data.temp
#             if (verbose) {
#                 message(paste("Finished averaging", assays[i], 
#                   "for cluster", j))
#             }
#             if (i == 1) {
#                 ident.new <- c(ident.new, as.character(x = ident.orig[temp.cells[1]]))
#             }
#         }

从源码可以看出,对数据中的cluster依次进行基因平均表达值的计算, rowMeans(x = expm1(x = x))表明平均表达值为data中数据转指数形式后减1的平均值,并不是简单的取data数据的平均值,实际上就是NormalizeData中log1p的逆步骤。

FindMarkers源码

getAnywhere('FindMarkers.default')# mean.fxn <- if (is.null(x = reduction) && slot != "scale.data") {
#         switch(EXPR = slot, data = function(x) {
#             return(log(x = rowMeans(x = expm1(x = x)) + pseudocount.use))
#         }, function(x) {
#             return(log(x = rowMeans(x = x) + pseudocount.use))
#         })
#     }
#     else {
#         rowMeans#     }
#     data.1 <- mean.fxn(data[features, cells.1, drop = FALSE])
#     data.2 <- mean.fxn(data[features, cells.2, drop = FALSE])
#     total.diff <- (data.1 - data.2)

从源码看出avg_logFC的计算过程先计算平均表达值,加1再取log对数后两组值相减的结果。pseudocount.use默认值为1。

LYZ基因示例

AverageExpression(pbmc_small, features = 'LYZ')
#0       1        2
#LYZ 44.31667 987.141 262.0951
FindMarkers(pbmc_small, features = 'LYZ',ident.1 = 0, ident.2 = 1)
#p_val avg_logFC pct.1 pct.2    p_val_adj
#LYZ 6.997602e-11  -3.08215 0.417     1 1.609449e-08
log((44.31667+1)/(987.141+1))
#-3.08215

马克marker

#T细胞
FeaturePlot(object = pbmc_small, features = c('CD3D', 'CD8A', 'IL7R'),ncol=3)

相关文章

网友评论

      本文标题:单细胞转录组/AverageExpression平均表达是个啥

      本文链接:https://www.haomeiwen.com/subject/ekeozltx.html