美文网首页单细胞分析单细胞单细胞转录组
10xGenomics单细胞转录组亚群细分策略

10xGenomics单细胞转录组亚群细分策略

作者: 尧小飞 | 来源:发表于2019-03-07 13:43 被阅读167次

    10xGenomics单细胞转录组

    10xGenomics单细胞转录组分析的核心就是聚类,但是单细胞转录组分析的聚类到目前为止还存在很多困难和挑战,具体可以参考文献Challenges in unsupervised clustering of single-cell RNA-seq data。这里介绍的聚类、亚群再分析使用的10xGenomics单细胞转录组最常用的seurat软件包。

    Hi,
    Determining the "right" set of clusters for a single-cell dataset is a challenging problem and often requires interpretation from a biological viewpoint. As mentioned in #819, this article provides a good review on single cell clustering.
    satijalab Further subdivisions within clusters #1192

    10xGenomics单细胞转录组亚群细分策略

    目前较为常见的方法有两种策略:

    • 调整亚群分辨率
    • 亚群细胞提取出来,重新从头进行聚类

    调整亚群分辨率

    其实调整亚群聚类分辨率来实现亚群细分,官方Guided Clustering Tutorial手册有相关说明。

    Further subdivisions within cell types
    If you perturb some of our parameter choices above (for example, setting resolution=0.8 or changing the number of PCs), you might see the CD4 T cells subdivide into two groups. You can explore this subdivision to find markers separating the two T cell subsets. However, before reclustering (which will overwrite object@ident), we can stash our renamed identities to be easily recovered later.

    # First lets stash our identities for later
    pbmc <- StashIdent(object = pbmc, save.name = "ClusterNames_0.6")
    
    # Note that if you set save.snn=T above, you don't need to recalculate the
    # SNN, and can simply put: pbmc <- FindClusters(pbmc,resolution = 0.8)
    pbmc <- FindClusters(object = pbmc, reduction.type = "pca", dims.use = 1:10, 
        resolution = 0.8, print.output = FALSE)
    ## Warning in BuildSNN(object = object, genes.use = genes.use, reduction.type
    ## = reduction.type, : Build parameters exactly match those of already
    ## computed and stored SNN. To force recalculation, set force.recalc to TRUE.
    # Demonstration of how to plot two tSNE plots side by side, and how to color
    # points based on different criteria
    plot1 <- TSNEPlot(object = pbmc, do.return = TRUE, no.legend = TRUE, do.label = TRUE)
    plot2 <- TSNEPlot(object = pbmc, do.return = TRUE, group.by = "ClusterNames_0.6", 
        no.legend = TRUE, do.label = TRUE)
    plot_grid(plot1, plot2)
    
    调整分辨率实现亚群细分

    亚群细胞提取出来,重新从头进行聚类

    这种方式就是要根据表达矩阵和聚类文件,把某一个聚类的所有细胞表达矩阵提取出来,然后重头分析一遍,提取表达矩阵需要两个文件:

    • 细胞以及对应聚类编号csv文件]
    • 所有细胞表达矩阵文件

    细胞以及对应聚类编号csv文件:

    一共两列,第一列为细胞barcode,第二列为聚类编号。


    细胞以及对应聚类编号csv文件

    表达矩阵文件

    第一行为表头,第一列为基因名称,除了第一列以外,其他的每一列为一个细胞barcode。每一行为某个基因在所有细胞总的表达情况,对应每个数字为该基因在该细胞中的表达量。


    表达矩阵文件

    具体提取脚本,会有另外文章说明,这里不再概述。

    提取表达量文件后,重新按照pipeline进行分析,得到聚类结果等。


    重新从头进行聚类结果

    特别说明:

    上述主要是针对单个样品的亚群细分分析,如果是有比较差异分析的话,还是需要提前表达矩阵或者S4对象,重新聚类、差异分析,这里是官方GitHub回复意见:

    You can certainly subset your data, and recalculate Variable Genes, scale, run PCA, and cluster.
    Note that you can set ident.use = c(0, 1) to subset two clusters.
    satijalab Re-clustering of given clusters #752

    相关文章

      网友评论

        本文标题:10xGenomics单细胞转录组亚群细分策略

        本文链接:https://www.haomeiwen.com/subject/jurcpqtx.html