import tensorflow as tf
import numpy as np
#使用numpy生成100个随机点
x_data = np.random.rand(100)
y_data = x_data*0.1+0.2
#构造一个线性模型
b =tf.Variable(0.)
k = tf.Variable(0.)
y =k*x_data+b
#二次代价函数
loss = tf.reduce_mean(tf.square(y_data-y))
#定义一个梯度下降法来进行训练的优化器
optimizer = tf.train.GradientDescentOptimizer(0.2)
#最小化代价函数
train =optimizer.minimize(loss)
init =tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for step in range(201):
sess.run(train)
if step%20 ==0:
print(step,sess.run([k,b]))
网友评论