美文网首页
基于POX交叉的遗传算法求解流水车间调度(J-Shop)问题二

基于POX交叉的遗传算法求解流水车间调度(J-Shop)问题二

作者: 学习编程王同学 | 来源:发表于2019-01-04 08:37 被阅读36次

    对于一个6个工件,6台机器的流水车间调度问题,程序运行结果如下:

    甘特图

    下面是主程序、交叉算子程序、计算目标函数值程序,全部程序都可以下载(下载全部程序)。

    主程序如下:

    clc;
    clear;
    
    [jobN, machineN, taskDuration, taskUse, processSize] = readDataFile('ft06.txt');
    
    popSize = 200;
    chromLength = jobN * processSize;
    pc = 0.85;
    pm = 0.05;
    maxGen = 100;
    
    bestObjValue = 0;
    objValues = zeros(1, maxGen);
    avgObjValue = zeros(1, maxGen);
    bestChrom = zeros(1, chromLength);
    
    pop = initPop(popSize, chromLength, jobN);
    objValue = calObjValue(pop, jobN, machineN, processSize, taskDuration, taskUse);
    fitness = calFitness(objValue);
    for gen = 1:maxGen
        pop = selection(pop, fitness);
        pop = crossover(pop, pc, jobN);
        pop = mutation(pop, pm);
        
        objValue = calObjValue(pop, jobN, machineN, processSize, taskDuration, taskUse);
        fitness = calFitness(objValue);
        
        avgObjValue(gen) = sum(objValue) / popSize;
        [objValues, bestObjValue, bestChrom] = bestValue(gen, pop, ...
            objValue, objValues, bestObjValue, bestChrom);
    end
    fprintf('最优染色体: %s\n', mat2str(bestChrom));
    fprintf('最优时间: %d\n', bestObjValue);
    figure();
    plot(1:maxGen, objValues);
    title('种群最优个体目标函数(时间)变化图');
    figure();
    plot(1:maxGen, avgObjValue);
    title('种群目标函数值平均值(时间)变化图');
    [taskSTime, taskETime] = calTaskTime(bestChrom, jobN, machineN, ...
        processSize, taskDuration, taskUse);
    drawGantt(taskUse, taskSTime, taskETime);
    

    POX交叉算子程序:

    function cpop = crossover(pop, pc, jobN)
    % 交叉,POX方法
    cpop = pop;
    for i = 1:2:size(pop, 1)
        if rand < pc
            [p1, p2] = deal(pop(i, :), pop(i+1, :));
            [c1, c2] = deal(p1, p2);
            canJ = randperm(jobN);
            J = canJ(1:randi(jobN-1));
            [c1Lia, c2Lia] = deal(ismember(p1, J), ismember(p2, J));
            [c1(c1Lia), c2(c2Lia)] = deal(p2(c2Lia), p1(c1Lia));
            [cpop(i, :), cpop(i+1, :)] = deal(c1, c2); 
        end
    end
    end
    

    计算目标函数值程序:

    function objValue = calObjValue(pop, jobN, machineN, processSize, taskDuration, taskUse)
    % 计算种群目标函数值(总完工时间)
    [popSize, ~] = size(pop);
    objValue = zeros(1, popSize);
    for i = 1:popSize
        [~, taskETime] = calTaskTime(pop(i, :), jobN, machineN, ...
            processSize, taskDuration, taskUse);
        objValue(i) = max(max(taskETime));
    end
    end
    
    
    function [taskSTime, taskETime] = calTaskTime(chrom, jobN, machineN, processSize, taskDuration, taskUse)
    % 计算染色体目标函数值(总完工时间)
    jobProcess = zeros(1, jobN);
    machETime = zeros(1, machineN);
    [taskSTime, taskETime] = deal(zeros(jobN, processSize));
    for j = 1:length(chrom)
        job = chrom(j);
        jobProcess(job) = jobProcess(job) + 1;
        process = jobProcess(job);
        machine = taskUse(job, process);
        if process == 1
            startTime = max([0, machETime(machine)]);
        else
            startTime = max([taskETime(job, process-1), machETime(machine)]);
        end
        taskSTime(job, process) = startTime;
        endTime = startTime + taskDuration(job, process);
        [taskETime(job, process), machETime(machine)] = deal(endTime);
    end
    end
    

    相关文章

      网友评论

          本文标题:基于POX交叉的遗传算法求解流水车间调度(J-Shop)问题二

          本文链接:https://www.haomeiwen.com/subject/eoocrqtx.html