美文网首页
4、递归神经网络(Mnist数据集)

4、递归神经网络(Mnist数据集)

作者: MakeStart | 来源:发表于2019-11-09 11:35 被阅读0次
    import tensorflow as tf
    import numpy as np
    from tensorflow.contrib import rnn
    from tensorflow.examples.tutorials.mnist import input_data
    
    sess = tf.Session()
    mnist = input_data.read_data_sets('data', one_hot=True)
    
    
    lr = 1e-3
    input_size = 28      # 每行输入28个特征点
    timestep_size = 28   # 持续输入28行
    hidden_size = 256    # 隐含层的数量
    layer_num = 2        # LSTM layer 的层数
    class_num = 10       # 10分类问题
    
    _X = tf.placeholder(tf.float32, [None, 784])
    y = tf.placeholder(tf.float32, [None, class_num])
    
    batch_size = tf.placeholder(tf.int32, [])
    keep_prob = tf.placeholder(tf.float32, [])
    
    X = tf.reshape(_X, [-1, 28, 28])
    
    def lstm_cell():
        cell = rnn.LSTMCell(hidden_size, reuse=tf.get_variable_scope().reuse)
        return rnn.DropoutWrapper(cell, output_keep_prob=keep_prob)
    
    mlstm_cell = tf.contrib.rnn.MultiRNNCell([lstm_cell() for _ in range(layer_num)], state_is_tuple = True)
    
    #用全零来初始化状态
    init_state = mlstm_cell.zero_state(batch_size, dtype=tf.float32)
    
    #得到每一层的输出结果
    outputs = list()
    state = init_state
    with tf.variable_scope('RNN'):
        for timestep in range(timestep_size):
            if timestep > 0:
                tf.get_variable_scope().reuse_variables()
            (cell_output, state) = mlstm_cell(X[:, timestep, :],state)
            outputs.append(cell_output)
    h_state = outputs[-1]
    
    #Softmax层参数
    W = tf.Variable(tf.truncated_normal([hidden_size, class_num], stddev=0.1), dtype=tf.float32)
    bias = tf.Variable(tf.constant(0.1,shape=[class_num]), dtype=tf.float32)
    y_pre = tf.nn.softmax(tf.matmul(h_state, W) + bias)
    
    
    # 损失和评估函数
    cross_entropy = -tf.reduce_mean(y * tf.log(y_pre))
    train_op = tf.train.AdamOptimizer(lr).minimize(cross_entropy)
    
    correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(y,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    
    
    sess.run(tf.global_variables_initializer())
    for i in range(2000):
        _batch_size = 128
        batch = mnist.train.next_batch(_batch_size)
        if (i+1)%200 == 0:
            train_accuracy = sess.run(accuracy, feed_dict={
                _X:batch[0], y: batch[1], keep_prob: 1.0, batch_size: _batch_size})
            # 已经迭代完成的 epoch 数: mnist.train.epochs_completed
            print ("Iter%d, step %d, training accuracy %g" % ( mnist.train.epochs_completed, (i+1), train_accuracy))
        sess.run(train_op, feed_dict={_X: batch[0], y: batch[1], keep_prob: 0.5, batch_size: _batch_size})
    
    # 计算测试数据的准确率
    print ("test accuracy %g"% sess.run(accuracy, feed_dict={
        _X: mnist.test.images, y: mnist.test.labels, keep_prob: 1.0, batch_size:mnist.test.images.shape[0]}))
    
    
    

    相关文章

      网友评论

          本文标题:4、递归神经网络(Mnist数据集)

          本文链接:https://www.haomeiwen.com/subject/epogbctx.html