美文网首页
简析Spark Streaming/Flink的Kafka动态感

简析Spark Streaming/Flink的Kafka动态感

作者: LittleMagic | 来源:发表于2020-08-02 22:23 被阅读0次

    前言

    Sunday night,继续超短文模式(希望下周就可以不这么划水了hhhh

    Kafka是我们日常的流处理任务中最为常用的数据源之一。随着数据类型和数据量的增大,难免要增加新的Kafka topic,或者为已有的topic增加更多partition。那么,Kafka后面作为消费者的实时处理引擎是如何感知到topic和partition变化的呢?本文以Spark Streaming和Flink为例来简单探究一下。

    Spark Streaming的场合

    根据官方文档(如上图),spark-streaming-kafka-0-10才支持Kafka的动态感知(即Dynamic Topic Subscription),翻翻源码,来到o.a.s.streaming.kafka010.DirectKafkaInputDStream类,每个微批次都会调用的compute()方法的第一行。

    val untilOffsets = clamp(latestOffsets())
    

    顾名思义,clamp()方法用来限制数据的流量,这里不提。而latestOffsets()方法返回各个partition当前最近的offset值,其具体实现如下(包含它调用的paranoidPoll()方法)。

    /**
     * Returns the latest (highest) available offsets, taking new partitions into account.
     */
    protected def latestOffsets(): Map[TopicPartition, Long] = {
      val c = consumer
      paranoidPoll(c)
      val parts = c.assignment().asScala
      // make sure new partitions are reflected in currentOffsets
      val newPartitions = parts.diff(currentOffsets.keySet)
      // Check if there's any partition been revoked because of consumer rebalance.
      val revokedPartitions = currentOffsets.keySet.diff(parts)
      if (revokedPartitions.nonEmpty) {
        throw new IllegalStateException(s"Previously tracked partitions " +
          s"${revokedPartitions.mkString("[", ",", "]")} been revoked by Kafka because of consumer " +
          s"rebalance. This is mostly due to another stream with same group id joined, " +
          s"please check if there're different streaming application misconfigure to use same " +
          s"group id. Fundamentally different stream should use different group id")
      }
      // position for new partitions determined by auto.offset.reset if no commit
      currentOffsets = currentOffsets ++ newPartitions.map(tp => tp -> c.position(tp)).toMap
      // find latest available offsets
      c.seekToEnd(currentOffsets.keySet.asJava)
      parts.map(tp => tp -> c.position(tp)).toMap
    }
    
    /**
     * The concern here is that poll might consume messages despite being paused,
     * which would throw off consumer position.  Fix position if this happens.
     */
    private def paranoidPoll(c: Consumer[K, V]): Unit = {
      // don't actually want to consume any messages, so pause all partitions
      c.pause(c.assignment())
      val msgs = c.poll(0)
      if (!msgs.isEmpty) {
        // position should be minimum offset per topicpartition
        msgs.asScala.foldLeft(Map[TopicPartition, Long]()) { (acc, m) =>
          val tp = new TopicPartition(m.topic, m.partition)
          val off = acc.get(tp).map(o => Math.min(o, m.offset)).getOrElse(m.offset)
          acc + (tp -> off)
        }.foreach { case (tp, off) =>
            logInfo(s"poll(0) returned messages, seeking $tp to $off to compensate")
            c.seek(tp, off)
        }
      }
    }
    

    可见,在每次compute()方法执行时,都会通过paranoidPoll()方法来seek到每个TopicPartition对应的offset位置,并且通过latestOffsets()方法找出那些新加入的partition,并维护它们的offset,实现了动态感知。

    由上也可以看出,Spark Streaming无法处理Kafka Consumer的Rebalance(之前讲过),所以一定要为不同的Streaming App设置不同的group.id。

    Flink的场合

    根据官方文档(如上图),Flink是支持Topic/Partition Discovery的,但是默认并未开启,需要手动配置flink.partition-discovery.interval-millis参数,即动态感知新topic/partition的间隔,单位毫秒。

    Flink Kafka Source的基类时o.a.f.streaming.connectors.kafka.FlinkKafkaConsumerBase抽象类,在其run()方法中,会先创建获取数据的KafkaFetcher,再判断是否启用了动态感知。

    this.kafkaFetcher = createFetcher(
            sourceContext,
            subscribedPartitionsToStartOffsets,
            watermarkStrategy,
            (StreamingRuntimeContext) getRuntimeContext(),
            offsetCommitMode,
            getRuntimeContext().getMetricGroup().addGroup(KAFKA_CONSUMER_METRICS_GROUP),
            useMetrics);
    
    if (!running) {
        return;
    }
    
    // depending on whether we were restored with the current state version (1.3),
    // remaining logic branches off into 2 paths:
    //  1) New state - partition discovery loop executed as separate thread, with this
    //                 thread running the main fetcher loop
    //  2) Old state - partition discovery is disabled and only the main fetcher loop is executed
    if (discoveryIntervalMillis == PARTITION_DISCOVERY_DISABLED) {
        kafkaFetcher.runFetchLoop();
    } else {
        runWithPartitionDiscovery();
    }
    

    如果启用了,最终会调用createAndStartDiscoveryLoop()方法,启动一个单独的线程,负责以discoveryIntervalMillis为周期发现新的topic/partition,并传递给KafkaFetcher。

    private void createAndStartDiscoveryLoop(AtomicReference<Exception> discoveryLoopErrorRef) {
        discoveryLoopThread = new Thread(() -> {
            try {
                // --------------------- partition discovery loop ---------------------
                // throughout the loop, we always eagerly check if we are still running before
                // performing the next operation, so that we can escape the loop as soon as possible
                while (running) {
                    if (LOG.isDebugEnabled()) {
                        LOG.debug("Consumer subtask {} is trying to discover new partitions ...", getRuntimeContext().getIndexOfThisSubtask());
                    }
                    final List<KafkaTopicPartition> discoveredPartitions;
                    try {
                        discoveredPartitions = partitionDiscoverer.discoverPartitions();
                    } catch (AbstractPartitionDiscoverer.WakeupException | AbstractPartitionDiscoverer.ClosedException e) {
                        // the partition discoverer may have been closed or woken up before or during the discovery;
                        // this would only happen if the consumer was canceled; simply escape the loop
                        break;
                    }
                    // no need to add the discovered partitions if we were closed during the meantime
                    if (running && !discoveredPartitions.isEmpty()) {
                        kafkaFetcher.addDiscoveredPartitions(discoveredPartitions);
                    }
                    // do not waste any time sleeping if we're not running anymore
                    if (running && discoveryIntervalMillis != 0) {
                        try {
                            Thread.sleep(discoveryIntervalMillis);
                        } catch (InterruptedException iex) {
                            // may be interrupted if the consumer was canceled midway; simply escape the loop
                            break;
                        }
                    }
                }
            } catch (Exception e) {
                discoveryLoopErrorRef.set(e);
            } finally {
                // calling cancel will also let the fetcher loop escape
                // (if not running, cancel() was already called)
                if (running) {
                    cancel();
                }
            }
        }, "Kafka Partition Discovery for " + getRuntimeContext().getTaskNameWithSubtasks());
        discoveryLoopThread.start();
    }
    

    可见,Flink通过名为PartitionDiscoverer的组件来实现动态感知。上面的代码中调用了discoverPartitions()方法,其源码如下。

    public List<KafkaTopicPartition> discoverPartitions() throws WakeupException, ClosedException {
        if (!closed && !wakeup) {
            try {
                List<KafkaTopicPartition> newDiscoveredPartitions;
                // (1) get all possible partitions, based on whether we are subscribed to fixed topics or a topic pattern
                if (topicsDescriptor.isFixedTopics()) {
                    newDiscoveredPartitions = getAllPartitionsForTopics(topicsDescriptor.getFixedTopics());
                } else {
                    List<String> matchedTopics = getAllTopics();
                    // retain topics that match the pattern
                    Iterator<String> iter = matchedTopics.iterator();
                    while (iter.hasNext()) {
                        if (!topicsDescriptor.isMatchingTopic(iter.next())) {
                            iter.remove();
                        }
                    }
                    if (matchedTopics.size() != 0) {
                        // get partitions only for matched topics
                        newDiscoveredPartitions = getAllPartitionsForTopics(matchedTopics);
                    } else {
                        newDiscoveredPartitions = null;
                    }
                }
                // (2) eliminate partition that are old partitions or should not be subscribed by this subtask
                if (newDiscoveredPartitions == null || newDiscoveredPartitions.isEmpty()) {
                    throw new RuntimeException("Unable to retrieve any partitions with KafkaTopicsDescriptor: " + topicsDescriptor);
                } else {
                    Iterator<KafkaTopicPartition> iter = newDiscoveredPartitions.iterator();
                    KafkaTopicPartition nextPartition;
                    while (iter.hasNext()) {
                        nextPartition = iter.next();
                        if (!setAndCheckDiscoveredPartition(nextPartition)) {
                            iter.remove();
                        }
                    }
                }
                return newDiscoveredPartitions;
            } catch (WakeupException e) {
                // the actual topic / partition metadata fetching methods
                // may be woken up midway; reset the wakeup flag and rethrow
                wakeup = false;
                throw e;
            }
        } else if (!closed && wakeup) {
            // may have been woken up before the method call
            wakeup = false;
            throw new WakeupException();
        } else {
            throw new ClosedException();
        }
    

    首先,会根据传入的是单个固定的topic还是由正则表达式指定的多个topics来分别处理,最终都调用getAllPartitionsForTopics()方法来获取这些topic的所有partition(这个方法由抽象类AbstractPartitionDiscoverer的各个子类实现,很简单)。然后会遍历这些partition,并调用setAndCheckDiscoveredPartition()方法来检查之前是否消费过它们,如果是,则移除之,保证方法返回的是新加入的partition。

    The End

    明天早起搬砖,民那晚安晚安。

    相关文章

      网友评论

          本文标题:简析Spark Streaming/Flink的Kafka动态感

          本文链接:https://www.haomeiwen.com/subject/eqqmrktx.html