美文网首页
OC类的结构

OC类的结构

作者: Scott丶Wang | 来源:发表于2018-03-14 11:08 被阅读21次

TaggedPointer

Tagged Pointer是一个能够提升性能、节省内存的有趣的技术。在OS X 10.10中,NSString就采用了这项技术,现在让我们来看看该技术的实现过程:

先看看所有对象的本质是什么吧,没错,是一个结构体。

struct objc_object {
private:
    isa_t isa;
public:
    // ISA() assumes this is NOT a tagged pointer object
    Class ISA();

    // getIsa() allows this to be a tagged pointer object
    Class getIsa();

    // initIsa() should be used to init the isa of new objects only.
    // If this object already has an isa, use changeIsa() for correctness.
    // initInstanceIsa(): objects with no custom RR/AWZ
    // initClassIsa(): class objects
    // initProtocolIsa(): protocol objects
    // initIsa(): other objects
    void initIsa(Class cls /*nonpointer=false*/);
    void initClassIsa(Class cls /*nonpointer=maybe*/);
    void initProtocolIsa(Class cls /*nonpointer=maybe*/);
    void initInstanceIsa(Class cls, bool hasCxxDtor);

    // changeIsa() should be used to change the isa of existing objects.
    // If this is a new object, use initIsa() for performance.
    Class changeIsa(Class newCls);

    bool hasNonpointerIsa();
    bool isTaggedPointer();
    bool isBasicTaggedPointer();
    bool isExtTaggedPointer();
    bool isClass();

    // object may have associated objects?
    bool hasAssociatedObjects();
    void setHasAssociatedObjects();

    // object may be weakly referenced?
    bool isWeaklyReferenced();
    void setWeaklyReferenced_nolock();

    // object may have -.cxx_destruct implementation?
    bool hasCxxDtor();

    // Optimized calls to retain/release methods
    id retain();
    void release();
    id autorelease();

    // Implementations of retain/release methods
    id rootRetain();
    bool rootRelease();
    id rootAutorelease();
    bool rootTryRetain();
    bool rootReleaseShouldDealloc();
    uintptr_t rootRetainCount();

    // Implementation of dealloc methods
    bool rootIsDeallocating();
    void clearDeallocating();
    void rootDealloc();

private:
    void initIsa(Class newCls, bool nonpointer, bool hasCxxDtor);

    // Slow paths for inline control
    id rootAutorelease2();
    bool overrelease_error();

#if SUPPORT_NONPOINTER_ISA
    // Unified retain count manipulation for nonpointer isa
    id rootRetain(bool tryRetain, bool handleOverflow);
    bool rootRelease(bool performDealloc, bool handleUnderflow);
    id rootRetain_overflow(bool tryRetain);
    bool rootRelease_underflow(bool performDealloc);

    void clearDeallocating_slow();

    // Side table retain count overflow for nonpointer isa
    void sidetable_lock();
    void sidetable_unlock();

    void sidetable_moveExtraRC_nolock(size_t extra_rc, bool isDeallocating, bool weaklyReferenced);
    bool sidetable_addExtraRC_nolock(size_t delta_rc);
    size_t sidetable_subExtraRC_nolock(size_t delta_rc);
    size_t sidetable_getExtraRC_nolock();
#endif

    // Side-table-only retain count
    bool sidetable_isDeallocating();
    void sidetable_clearDeallocating();

    bool sidetable_isWeaklyReferenced();
    void sidetable_setWeaklyReferenced_nolock();

    id sidetable_retain();
    id sidetable_retain_slow(SideTable& table);

    uintptr_t sidetable_release(bool performDealloc = true);
    uintptr_t sidetable_release_slow(SideTable& table, bool performDealloc = true);

    bool sidetable_tryRetain();

    uintptr_t sidetable_retainCount();
#if DEBUG
    bool sidetable_present();
#endif
};

上面的结构体有个bool isTaggedPointer()这样的成员函数,这个成员函数的作用是什么呢?首先要知道对象在内存中是对齐的,它们的地址总是指针大小的整数倍,通常为16的倍数。某个类的实例对象指针是一个64位的整数,而为了对齐,一些位将永远是零(这也就是说,实例对象的地址的最低有效位是0,即这个地址是个偶数(绝大多数上))。

Tagged Pointer利用了这一现状,它使对象指针中非零位有了特殊的含义。在苹果的64位Objective-C实现中,若对象指针的最低有效位为1(即奇数),则该指针为Tagged Pointer。这种指针不通过解引用isa来获取其所属类,而是通过接下来三位的一个类表的索引。该索引是用来查找所属类是采用Tagged Pointer的哪个类。剩下的60位则留给类来使用。

以下是这个成员函数的实现:看上去很清晰明了。在真正的实现内联函数中有一个宏_OBJC_TAG_MASK,这个宏是根据平台来做了不同的定义,MAC上是(1ULL<<63),iOS平台是1。假设我们是iOS设备,如果实例对象的地址&1之后的结果为1,那么就利用了TaggedPointer技术,反之则没有。

#if TARGET_OS_OSX && __x86_64__
    // 64-bit Mac - tag bit is LSB
    #define OBJC_MSB_TAGGED_POINTERS 0
#else
    // Everything else - tag bit is MSB
    #define OBJC_MSB_TAGGED_POINTERS 1
#endif

#if OBJC_MSB_TAGGED_POINTERS
    #define _OBJC_TAG_MASK (1ULL<<63)
#else
    #define _OBJC_TAG_MASK 1
#endif

static inline bool 
_objc_isTaggedPointer(const void *ptr) 
{
    return ((intptr_t)ptr & _OBJC_TAG_MASK) == _OBJC_TAG_MASK;
}

inline bool 
objc_object::isTaggedPointer() 
{
    return _objc_isTaggedPointer(this);
}
struct objc_class : objc_object {
    // Class ISA;
    Class superclass;
    cache_t cache;             // formerly cache pointer and vtable
    class_data_bits_t bits;    // class_rw_t * plus custom rr/alloc flags

    class_rw_t *data() { 
        return bits.data();
    }
    void setData(class_rw_t *newData) {
        bits.setData(newData);
    }

    void setInfo(uint32_t set) {
        assert(isFuture()  ||  isRealized());
        data()->setFlags(set);
    }

    void clearInfo(uint32_t clear) {
        assert(isFuture()  ||  isRealized());
        data()->clearFlags(clear);
    }

    // set and clear must not overlap
    void changeInfo(uint32_t set, uint32_t clear) {
        assert(isFuture()  ||  isRealized());
        assert((set & clear) == 0);
        data()->changeFlags(set, clear);
    }

    bool hasCustomRR() {
        return ! bits.hasDefaultRR();
    }
    void setHasDefaultRR() {
        assert(isInitializing());
        bits.setHasDefaultRR();
    }
    void setHasCustomRR(bool inherited = false);
    void printCustomRR(bool inherited);

    bool hasCustomAWZ() {
        return ! bits.hasDefaultAWZ();
    }
    void setHasDefaultAWZ() {
        assert(isInitializing());
        bits.setHasDefaultAWZ();
    }
    void setHasCustomAWZ(bool inherited = false);
    void printCustomAWZ(bool inherited);

    bool instancesRequireRawIsa() {
        return bits.instancesRequireRawIsa();
    }
    void setInstancesRequireRawIsa(bool inherited = false);
    void printInstancesRequireRawIsa(bool inherited);

    bool canAllocNonpointer() {
        assert(!isFuture());
        return !instancesRequireRawIsa();
    }
    bool canAllocFast() {
        assert(!isFuture());
        return bits.canAllocFast();
    }


    bool hasCxxCtor() {
        // addSubclass() propagates this flag from the superclass.
        assert(isRealized());
        return bits.hasCxxCtor();
    }
    void setHasCxxCtor() { 
        bits.setHasCxxCtor();
    }

    bool hasCxxDtor() {
        // addSubclass() propagates this flag from the superclass.
        assert(isRealized());
        return bits.hasCxxDtor();
    }
    void setHasCxxDtor() { 
        bits.setHasCxxDtor();
    }


    bool isSwift() {
        return bits.isSwift();
    }


    // Return YES if the class's ivars are managed by ARC, 
    // or the class is MRC but has ARC-style weak ivars.
    bool hasAutomaticIvars() {
        return data()->ro->flags & (RO_IS_ARC | RO_HAS_WEAK_WITHOUT_ARC);
    }

    // Return YES if the class's ivars are managed by ARC.
    bool isARC() {
        return data()->ro->flags & RO_IS_ARC;
    }


#if SUPPORT_NONPOINTER_ISA
    // Tracked in non-pointer isas; not tracked otherwise
#else
    bool instancesHaveAssociatedObjects() {
        // this may be an unrealized future class in the CF-bridged case
        assert(isFuture()  ||  isRealized());
        return data()->flags & RW_INSTANCES_HAVE_ASSOCIATED_OBJECTS;
    }

    void setInstancesHaveAssociatedObjects() {
        // this may be an unrealized future class in the CF-bridged case
        assert(isFuture()  ||  isRealized());
        setInfo(RW_INSTANCES_HAVE_ASSOCIATED_OBJECTS);
    }
#endif

    bool shouldGrowCache() {
        return true;
    }

    void setShouldGrowCache(bool) {
        // fixme good or bad for memory use?
    }

    bool isInitializing() {
        return getMeta()->data()->flags & RW_INITIALIZING;
    }

    void setInitializing() {
        assert(!isMetaClass());
        ISA()->setInfo(RW_INITIALIZING);
    }

    bool isInitialized() {
        return getMeta()->data()->flags & RW_INITIALIZED;
    }

    void setInitialized();

    bool isLoadable() {
        assert(isRealized());
        return true;  // any class registered for +load is definitely loadable
    }

    IMP getLoadMethod();

    // Locking: To prevent concurrent realization, hold runtimeLock.
    bool isRealized() {
        return data()->flags & RW_REALIZED;
    }

    // Returns true if this is an unrealized future class.
    // Locking: To prevent concurrent realization, hold runtimeLock.
    bool isFuture() { 
        return data()->flags & RW_FUTURE;
    }

    bool isMetaClass() {
        assert(this);
        assert(isRealized());
        return data()->ro->flags & RO_META;
    }

    // NOT identical to this->ISA when this is a metaclass
    Class getMeta() {
        if (isMetaClass()) return (Class)this;
        else return this->ISA();
    }

    bool isRootClass() {
        return superclass == nil;
    }
    bool isRootMetaclass() {
        return ISA() == (Class)this;
    }

    const char *mangledName() { 
        // fixme can't assert locks here
        assert(this);

        if (isRealized()  ||  isFuture()) {
            return data()->ro->name;
        } else {
            return ((const class_ro_t *)data())->name;
        }
    }
    
    const char *demangledName(bool realize = false);
    const char *nameForLogging();

    // May be unaligned depending on class's ivars.
    uint32_t unalignedInstanceStart() {
        assert(isRealized());
        return data()->ro->instanceStart;
    }

    // Class's instance start rounded up to a pointer-size boundary.
    // This is used for ARC layout bitmaps.
    uint32_t alignedInstanceStart() {
        return word_align(unalignedInstanceStart());
    }

    // May be unaligned depending on class's ivars.
    uint32_t unalignedInstanceSize() {
        assert(isRealized());
        return data()->ro->instanceSize;
    }

    // Class's ivar size rounded up to a pointer-size boundary.
    uint32_t alignedInstanceSize() {
        return word_align(unalignedInstanceSize());
    }

    size_t instanceSize(size_t extraBytes) {
        size_t size = alignedInstanceSize() + extraBytes;
        // CF requires all objects be at least 16 bytes.
        if (size < 16) size = 16;
        return size;
    }

    void setInstanceSize(uint32_t newSize) {
        assert(isRealized());
        if (newSize != data()->ro->instanceSize) {
            assert(data()->flags & RW_COPIED_RO);
            *const_cast<uint32_t *>(&data()->ro->instanceSize) = newSize;
        }
        bits.setFastInstanceSize(newSize);
    }

    void chooseClassArrayIndex();

    void setClassArrayIndex(unsigned Idx) {
        bits.setClassArrayIndex(Idx);
    }

    unsigned classArrayIndex() {
        return bits.classArrayIndex();
    }
};

大致上有个了解,先看看

struct objc_object {
private:
    isa_t isa;
    ....
}

这里有个私有的isa成员变量,这个变量的类型是结构体isa_t,下面再看看isa_t结构体:

union isa_t 
{
    isa_t() { }
    isa_t(uintptr_t value) : bits(value) { }

    Class cls;
    uintptr_t bits;

    /*
     // Define SUPPORT_PACKED_ISA=1 on platforms that store the class in the isa
     // field as a maskable pointer with other data around it.
     #if (!__LP64__  ||  TARGET_OS_WIN32  ||  TARGET_OS_SIMULATOR)
     #   define SUPPORT_PACKED_ISA 0
     #else
     #   define SUPPORT_PACKED_ISA 1
     #endif
     */
#if SUPPORT_PACKED_ISA

    // extra_rc must be the MSB-most field (so it matches carry/overflow flags)
    // nonpointer must be the LSB (fixme or get rid of it)
    // shiftcls must occupy the same bits that a real class pointer would
    // bits + RC_ONE is equivalent to extra_rc + 1
    // RC_HALF is the high bit of extra_rc (i.e. half of its range)

    // future expansion:
    // uintptr_t fast_rr : 1;     // no r/r overrides
    // uintptr_t lock : 2;        // lock for atomic property, @synch
    // uintptr_t extraBytes : 1;  // allocated with extra bytes

# if __arm64__
#   define ISA_MASK        0x0000000ffffffff8ULL
#   define ISA_MAGIC_MASK  0x000003f000000001ULL
#   define ISA_MAGIC_VALUE 0x000001a000000001ULL
    struct {
        uintptr_t nonpointer        : 1;
        uintptr_t has_assoc         : 1;
        uintptr_t has_cxx_dtor      : 1;
        uintptr_t shiftcls          : 33; // MACH_VM_MAX_ADDRESS 0x1000000000
        uintptr_t magic             : 6;
        uintptr_t weakly_referenced : 1;
        uintptr_t deallocating      : 1;
        uintptr_t has_sidetable_rc  : 1;
        uintptr_t extra_rc          : 19;
#       define RC_ONE   (1ULL<<45)
#       define RC_HALF  (1ULL<<18)
    };

# elif __x86_64__
#   define ISA_MASK        0x00007ffffffffff8ULL
#   define ISA_MAGIC_MASK  0x001f800000000001ULL
#   define ISA_MAGIC_VALUE 0x001d800000000001ULL
    struct {
        uintptr_t nonpointer        : 1;
        uintptr_t has_assoc         : 1;
        uintptr_t has_cxx_dtor      : 1;
        uintptr_t shiftcls          : 44; // MACH_VM_MAX_ADDRESS 0x7fffffe00000
        uintptr_t magic             : 6;
        uintptr_t weakly_referenced : 1;
        uintptr_t deallocating      : 1;
        uintptr_t has_sidetable_rc  : 1;
        uintptr_t extra_rc          : 8;
#       define RC_ONE   (1ULL<<56)
#       define RC_HALF  (1ULL<<7)
    };

# else
#   error unknown architecture for packed isa
# endif

// SUPPORT_PACKED_ISA
#endif


#if SUPPORT_INDEXED_ISA

# if  __ARM_ARCH_7K__ >= 2

#   define ISA_INDEX_IS_NPI      1
#   define ISA_INDEX_MASK        0x0001FFFC
#   define ISA_INDEX_SHIFT       2
#   define ISA_INDEX_BITS        15
#   define ISA_INDEX_COUNT       (1 << ISA_INDEX_BITS)
#   define ISA_INDEX_MAGIC_MASK  0x001E0001
#   define ISA_INDEX_MAGIC_VALUE 0x001C0001
    struct {
        uintptr_t nonpointer        : 1;
        uintptr_t has_assoc         : 1;
        uintptr_t indexcls          : 15;
        uintptr_t magic             : 4;
        uintptr_t has_cxx_dtor      : 1;
        uintptr_t weakly_referenced : 1;
        uintptr_t deallocating      : 1;
        uintptr_t has_sidetable_rc  : 1;
        uintptr_t extra_rc          : 7;
#       define RC_ONE   (1ULL<<25)
#       define RC_HALF  (1ULL<<6)
    };

# else
#   error unknown architecture for indexed isa
# endif

// SUPPORT_INDEXED_ISA
#endif

};

又是一个又臭又长的结构体,去掉系统判断以及某些宏的话,看上去也比较清晰。

相关文章

  • iOS 类原理探索:类的结构分析

    OC 类原理探索 系列文章 OC 类原理探索:类的结构分析 OC 类原理探索:类结构分析补充[https://ju...

  • Objective-C 中类的数据结构

    一、类的结构 OC 中的代码在底层实现,使用的是 C、C++,所以要研究 OC 中的类结构,可以将 OC 的代码转...

  • 深入理解Objective-C中类的数据结构

    一、类的结构 OC 中的代码在底层实现,使用的是 C、C++,所以要研究 OC 中的类结构,可以将 OC 的代码转...

  • 结构体和类的区别

    一、定义一个结构体 二、使用 三、结构体和OC类的区别 结构体: 只能封装属性,不能封装方法; 分配在栈上 OC类...

  • OC类的结构

    TaggedPointer Tagged Pointer是一个能够提升性能、节省内存的有趣的技术。在OS X 10...

  • 二、 字节对齐

    探索OC类的大小要先来说一下结构体,因为OC类底层都是以结构体的形式存在的。 1 结构体大小-字节对齐 我们先定义...

  • Runtime

    oc对象 OC类对象元类对象编译后的结构如下结构体 isa arm64架构之前isa只是一个指针,指向类对象或者元...

  • iOS底层初探

    OC底层实现原理 oc对象以及类的是底层实现 首先,通过数据结构的特性可以猜测类的底层应该是结构体这种数据结构,因...

  • iOS底层原理--Runtime--Class

    class结构----- __bridge作用:oc指针与void * 相互转换 元类对象和类对象数据结构相同 类...

  • Runtime 二:msg_msgSend执行流程

    在Runtime 一: OC 方法的底层数据结构和存储机制我们知道了OC类的底层结构,类方法的存储位置以及方法缓存...

网友评论

      本文标题:OC类的结构

      本文链接:https://www.haomeiwen.com/subject/eqtfqftx.html