美文网首页
如何用标签信息做半监督学习

如何用标签信息做半监督学习

作者: heishanlaoniu | 来源:发表于2021-12-02 11:25 被阅读0次
    # 主要是用索引信息 用监督样本来做训练
        def train(model, epochs):
            model.train()
            optimizer.zero_grad()
            output, att, emb1, com1, com2, emb2, emb= model(features, sadj, fadj)
            loss_class =  F.nll_loss(output[idx_train], labels[idx_train])
            #  !!!主要是这里 监督损失的索引只用idx_train的!!!
            loss_dep = (loss_dependence(emb1, com1, config.n) + loss_dependence(emb2, com2, config.n))/2
            loss_com = common_loss(com1,com2)
            loss = loss_class + config.beta * loss_dep + config.theta * loss_com
            acc = accuracy(output[idx_train], labels[idx_train])
            loss.backward()
            optimizer.step()
            acc_test, macro_f1, emb_test = main_test(model)
            print('e:{}'.format(epochs),
                  'ltr: {:.4f}'.format(loss.item()),
                  'atr: {:.4f}'.format(acc.item()),
                  'ate: {:.4f}'.format(acc_test.item()),
                  'f1te:{:.4f}'.format(macro_f1.item()))
            return loss.item(), acc_test.item(), macro_f1.item(), emb_test
    
        def main_test(model):
            model.eval()
            output, att, emb1, com1, com2, emb2, emb = model(features, sadj, fadj)
            acc_test = accuracy(output[idx_test], labels[idx_test])
            #  !!!这里测试的时候就用了测试的索引!!!
            label_max = []
            for idx in idx_test:
                label_max.append(torch.argmax(output[idx]).item())
            labelcpu = labels[idx_test].data.cpu()
            macro_f1 = f1_score(labelcpu, label_max, average='macro')
    

    相关文章

      网友评论

          本文标题:如何用标签信息做半监督学习

          本文链接:https://www.haomeiwen.com/subject/eweyxrtx.html