Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______
/ \
___2__ ___8__
/ \ / \
0 _4 7 9
/ \
3 5
For example, the lowest common ancestor (LCA) of nodes 2 and 8 is 6. Another example is LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool dfs(TreeNode* root, TreeNode* t, vector<TreeNode*>& v){
if(NULL == root) return false;
if(root == t){
v.push_back(root);
return true;
}
if(dfs(root->left, t, v) || dfs(root->right, t, v)){
v.push_back(root);
return true;
}else return false;
}
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
vector<TreeNode*> v1 = vector<TreeNode*>();
vector<TreeNode*> v2 = vector<TreeNode*>();
dfs(root, p, v1);
dfs(root, q, v2);
int i = v1.size() - 1;
int j = v2.size() - 1;
for(;i>=0 && j>=0 && v1[i] == v2[j];i--, j--);
return v1[++i];
}
};
网友评论