什么是直方图?
直方图是对数据的集合 统计 ,并将统计结果分布于一系列预定义的 bins 中。
这里的 数据 不仅仅指的是灰度值 (如上一篇您所看到的), 统计数据可能是任何能有效描述图像的特征。
先看一个例子吧。 假设有一个矩阵包含一张图像的信息 (灰度值 0-255):
如果我们按照某种方式去 统计 这些数字,会发生什么情况呢? 既然已知数字的 范围 包含 256 个值, 我们可以将这个范围分割成子区域(称作 bins), 如:
然后再统计掉入每一个 bin_i 的像素数目。采用这一方法来统计上面的数字矩阵,我们可以得到下图( x轴表示 bin, y轴表示各个bin中的像素个数)。
以上只是一个说明直方图如何工作以及它的用处的简单示例。直方图可以统计的不仅仅是颜色灰度, 它可以统计任何图像特征 (如 梯度, 方向等等)。
让我们再来搞清楚直方图的一些具体细节:
dims: 需要统计的特征的数目, 在上例中, dims = 1 因为我们仅仅统计了灰度值(灰度图像)。
bins: 每个特征空间 子区段 的数目,在上例中, bins = 16
range: 每个特征空间的取值范围,在上例中, range = [0,255]
怎样去统计两个特征呢? 在这种情况下, 直方图就是3维的了,x轴和y轴分别代表一个特征, z轴是掉入
组合中的样本数目。 同样的方法适用于更高维的情形 (当然会变得很复杂)。
关于怎么利用颜色直方图作为颜色特征评价两张图片的相似度,可以参考下面的文章:
网友评论