B+树的内部节点包括:Key键值,Index索引值
B+树的叶子节点包括:Key键值,Index索引值,Data数据
B+树的内部节点也可称为索引节点,叶子节点也可称为外部节点
B+树是对B树的一种变形树,数据节点都存储在叶节点上,叶子节点之间通过指针按照顺序链接。
它与B树的差异在于:
- 有k个子结点的结点必然有k个关键码;
- 非叶结点仅具有索引作用,跟记录有关的信息均存放在叶结点中。
- 树的所有叶结点构成一个有序链表,可以按照关键码排序的次序遍历全部记录。
如下图,是一个B+树:
![](https://img.haomeiwen.com/i2160494/2eae87b92b602d94.png)
下图是B+树的插入动画:
![](https://img.haomeiwen.com/i2160494/31ef13062530235d.gif)
B树、B+树和二叉树、平衡二叉树一样,都是经典的数据结构。
B+树由B树和索引顺序访问方法(ISAM,是不是很熟悉?对,这也是MyISAM引擎最初参考的数据结构)演化而来,但是在实际使用过程中几乎已经没有使用B树的情况了。
B+树的定义十分复杂,因此只简要地介绍B+树:B+树是为磁盘或其他直接存取辅助设备而设计的一种平衡查找树,在B+树中,所有记录节点都是按键值的大小顺序存放在同一层的叶节点中,各叶节点指针进行连接。
B和B+树的区别在于,B+树的非叶子结点只包含导航信息,不包含实际的值,所有的叶子结点和相连的节点使用链表相连,便于区间查找和遍历。
B+ 树的优点在于:
由于B+树在内部节点上不包含数据信息,因此在内存页中能够存放更多的key。 数据存放的更加紧密,具有更好的空间局部性。因此访问叶子节点上关联的数据也具有更好的缓存命中率。
B+树的叶子结点都是相链的,因此对整棵树的便利只需要一次线性遍历叶子结点即可。而且由于数据顺序排列并且相连,所以便于区间查找和搜索。而B树则需要进行每一层的递归遍历。相邻的元素可能在内存中不相邻,所以缓存命中性没有B+树好。
但是B树也有优点,其优点在于,由于B树的每一个节点都包含key和value,因此经常访问的元素可能离根节点更近,因此访问也更迅速。下面是B 树和B+树的区别图:
![](https://img.haomeiwen.com/i2160494/dced2ddcfd942731.png)
分析
对于一颗节点为N度为M的子树,查找和插入需要logM-1N ~ logM/2N次比较。这个很好证明,对于度为M的B树,每一个节点的子节点个数为M/2 到 M-1之间,所以树的高度在logM-1N至logM/2N之间。
这种效率是很高的,对于N=62*1000000000个节点,如果度为1024,则logM/2N <=4,即在620亿个元素中,如果这棵树的度为1024,则只需要小于4次即可定位到该节点,然后再采用二分查找即可找到要找的值。
网友评论