(1)、题目
在这里插入图片描述题目:评价下表中20条河流的水质情况。
注:含氧量越高越好(极大型指标),PH值越接近7越好(中间型指标),细菌总数越少越好(极小型指标),植物性营养物量介于10~20之间最佳,超过20或低于10均不好(范围型指标)。
(2)、读取Excel表中的数据
def read(file):
wb = xlrd.open_workbook(filename=file)#打开文件
sheet = wb.sheet_by_index(0)#通过索引获取表格
rows = sheet.nrows # 获取行数
all_content = [] #存放读取的数据
for j in range(1, 5): #取第1~第4列对的数据
temp = []
for i in range(1,rows) :
cell = sheet.cell_value(i, j) #获取数据
temp.append(cell)
all_content.append(temp) #按列添加到结果集中
temp = []
return np.array(all_content)
(3)、将不同的指标转换为极大型指标
#极小型指标 -> 极大型指标
def dataDirection_1(datas):
return np.max(datas)-datas #套公式
#中间型指标 -> 极大型指标
def dataDirection_2(datas, x_best):
temp_datas = datas - x_best
M = np.max(abs(temp_datas))
answer_datas = 1 - abs(datas - x_best) / M #套公式
return answer_datas
#区间型指标 -> 极大型指标
def dataDirection_3(datas, x_min, x_max):
M = max(x_min - np.min(datas), np.max(datas) - x_max)
answer_list = []
for i in datas:
if(i < x_min):
answer_list.append(1 - (x_min-i) /M) #套公式
elif( x_min <= i <= x_max):
answer_list.append(1)
else:
answer_list.append(1 - (i - x_max)/M)
return np.array(answer_list)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
(4)、正向化矩阵标准化
def temp2(datas):
K = np.power(np.sum(pow(datas,2),axis =1),0.5)
for i in range(0,K.size):
for j in range(0,datas[i].size):
datas[i,j] = datas[i,j] / K[i] #套用矩阵标准化的公式
return datas
在这里插入图片描述
(5)、计算得分并归一化
def temp3(answer2):
list_max = np.array([np.max(answer2[0,:]),np.max(answer2[1,:]),np.max(answer2[2,:]),np.max(answer2[3,:])]) #获取每一列的最大值
list_min = np.array([np.min(answer2[0,:]),np.min(answer2[1,:]),np.min(answer2[2,:]),np.min(answer2[3,:])]) #获取每一列的最小值
max_list = [] #存放第i个评价对象与最大值的距离
min_list = [] #存放第i个评价对象与最小值的距离
answer_list=[] #存放评价对象的未归一化得分
for k in range(0,np.size(answer2,axis = 1)): #遍历每一列数据
max_sum = 0
min_sum = 0
for q in range(0,4): #有四个指标
max_sum += np.power(answer2[q,k]-list_max[q],2) #按每一列计算Di+
min_sum += np.power(answer2[q,k]-list_min[q],2) #按每一列计算Di-
max_list.append(pow(max_sum,0.5))
min_list.append(pow(min_sum,0.5))
answer_list.append(min_list[k]/ (min_list[k] + max_list[k])) #套用计算得分的公式 Si = (Di-) / ((Di+) +(Di-))
max_sum = 0
min_sum = 0
answer = np.array(answer_list) #得分归一化
return (answer / np.sum(answer))
在这里插入图片描述
(6)、主函数
def main():
file = 'C:\\Users\\lenovo\Desktop\\数学建模\\TOPSIS法\\第2讲.TOPSIS法(优劣解距离法)7.17\\代码和例题数据\\20条河流的水质情况数据.xlsx'
answer1 = read(file) #读取文件
answer2 = []
for i in range(0, 4): #按照不同的列,根据不同的指标转换为极大型指标,因为只有四列
answer = None
if(i == 0): #本来就是极大型指标,不用转换
answer = answer1[0]
elif(i == 1): #中间型指标
answer = dataDirection_2(answer1[1],7)
elif(i==2): #极小型指标
answer = dataDirection_1(answer1[2])
else: #范围型指标
answer = dataDirection_3(answer1[3],10,20)
answer2.append(answer)
answer2 = np.array(answer2) #将list转换为numpy数组
answer3 = temp2(answer2) #数组正向化
answer4 = temp3(answer3) #标准化处理去钢
data = pd.DataFrame(answer4) #计算得分
#将得分输出到excel表格中
writer = pd.ExcelWriter('C:\\Users\\lenovo\Desktop\\数学建模\\TOPSIS法\\第2讲.TOPSIS法(优劣解距离法)7.17\\代码和例题数据\\A.xlsx') # 写入Excel文件
data.to_excel(writer, 'page_1', float_format='%.5f') # ‘page_1’是写入excel的sheet名
writer.save()
writer.close()
(7)、完整代码部分
# -*- coding: utf-8 -*-
"""
Created on Sat Jul 27 21:36:55 2019
@author: lenovo
"""
import numpy as np
import xlrd
import pandas as pd
#从excel文件中读取数据
def read(file):
wb = xlrd.open_workbook(filename=file)#打开文件
sheet = wb.sheet_by_index(0)#通过索引获取表格
rows = sheet.nrows # 获取行数
all_content = [] #存放读取的数据
for j in range(1, 5): #取第1~第4列对的数据
temp = []
for i in range(1,rows) :
cell = sheet.cell_value(i, j) #获取数据
temp.append(cell)
all_content.append(temp) #按列添加到结果集中
temp = []
return np.array(all_content)
#极小型指标 -> 极大型指标
def dataDirection_1(datas):
return np.max(datas)-datas #套公式
#中间型指标 -> 极大型指标
def dataDirection_2(datas, x_best):
temp_datas = datas - x_best
M = np.max(abs(temp_datas))
answer_datas = 1 - abs(datas - x_best) / M #套公式
return answer_datas
#区间型指标 -> 极大型指标
def dataDirection_3(datas, x_min, x_max):
M = max(x_min - np.min(datas), np.max(datas) - x_max)
answer_list = []
for i in datas:
if(i < x_min):
answer_list.append(1 - (x_min-i) /M) #套公式
elif( x_min <= i <= x_max):
answer_list.append(1)
else:
answer_list.append(1 - (i - x_max)/M)
return np.array(answer_list)
#正向化矩阵标准化
def temp2(datas):
K = np.power(np.sum(pow(datas,2),axis =1),0.5)
for i in range(0,K.size):
for j in range(0,datas[i].size):
datas[i,j] = datas[i,j] / K[i] #套用矩阵标准化的公式
return datas
#计算得分并归一化
def temp3(answer2):
list_max = np.array([np.max(answer2[0,:]),np.max(answer2[1,:]),np.max(answer2[2,:]),np.max(answer2[3,:])]) #获取每一列的最大值
list_min = np.array([np.min(answer2[0,:]),np.min(answer2[1,:]),np.min(answer2[2,:]),np.min(answer2[3,:])]) #获取每一列的最小值
max_list = [] #存放第i个评价对象与最大值的距离
min_list = [] #存放第i个评价对象与最小值的距离
answer_list=[] #存放评价对象的未归一化得分
for k in range(0,np.size(answer2,axis = 1)): #遍历每一列数据
max_sum = 0
min_sum = 0
for q in range(0,4): #有四个指标
max_sum += np.power(answer2[q,k]-list_max[q],2) #按每一列计算Di+
min_sum += np.power(answer2[q,k]-list_min[q],2) #按每一列计算Di-
max_list.append(pow(max_sum,0.5))
min_list.append(pow(min_sum,0.5))
answer_list.append(min_list[k]/ (min_list[k] + max_list[k])) #套用计算得分的公式 Si = (Di-) / ((Di+) +(Di-))
max_sum = 0
min_sum = 0
answer = np.array(answer_list) #得分归一化
return (answer / np.sum(answer))
def main():
file = 'C:\\Users\\lenovo\Desktop\\数学建模\\TOPSIS法\\第2讲.TOPSIS法(优劣解距离法)7.17\\代码和例题数据\\20条河流的水质情况数据.xlsx'
answer1 = read(file) #读取文件
answer2 = []
for i in range(0, 4): #按照不同的列,根据不同的指标转换为极大型指标,因为只有四列
answer = None
if(i == 0): #本来就是极大型指标,不用转换
answer = answer1[0]
elif(i == 1): #中间型指标
answer = dataDirection_2(answer1[1],7)
elif(i==2): #极小型指标
answer = dataDirection_1(answer1[2])
else: #范围型指标
answer = dataDirection_3(answer1[3],10,20)
answer2.append(answer)
answer2 = np.array(answer2) #将list转换为numpy数组
answer3 = temp2(answer2) #数组正向化
answer4 = temp3(answer3) #标准化处理去钢
data = pd.DataFrame(answer4) #计算得分
#将得分输出到excel表格中
writer = pd.ExcelWriter('C:\\Users\\lenovo\Desktop\\数学建模\\TOPSIS法\\第2讲.TOPSIS法(优劣解距离法)7.17\\代码和例题数据\\A.xlsx') # 写入Excel文件
data.to_excel(writer, 'page_1', float_format='%.5f') # ‘page_1’是写入excel的sheet名
writer.save()
writer.close()
main()
(8)、计算结果
在这里插入图片描述计算出结果后可通过excel表对得分进行手动排序
网友评论