美文网首页
100天搞定机器学习|Day23-25 决策树及Python实现

100天搞定机器学习|Day23-25 决策树及Python实现

作者: 统计学家 | 来源:发表于2019-08-16 10:15 被阅读0次
    image

    算法部分不再细讲,之前发过很多:

    【算法系列】决策树

    决策树(Decision Tree)ID3算法

    决策树(Decision Tree)C4.5算法

    决策树(Decision Tree)CART算法

    ID3、C4.5、CART三种决策树的区别

    实验:

    导入需要用到的python库

    import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd
    

    导入数据集

    dataset = pd.read_csv('Social_Network_Ads.csv')
    X = dataset.iloc[:, [2, 3]].values
    y = dataset.iloc[:, 4].values
    

    将数据集拆分为训练集和测试集

    from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
    

    特征缩放

    from sklearn.preprocessing import StandardScaler
    sc = StandardScaler()
    X_train = sc.fit_transform(X_train)
    X_test = sc.transform(X_test)
    

    对测试集进行决策树分类拟合

    from sklearn.tree import DecisionTreeClassifier
    classifier = DecisionTreeClassifier(criterion = 'entropy', random_state = 0)
    classifier.fit(X_train, y_train)
    

    预测测试集的结果

    y_pred = classifier.predict(X_test)
    

    制作混淆矩阵

    from sklearn.metrics import confusion_matrix
    cm = confusion_matrix(y_test, y_pred)
    

    将训练集结果进行可视化

    from matplotlib.colors import ListedColormap
    X_set, y_set = X_train, y_train
    X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
                         np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
    plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
                 alpha = 0.75, cmap = ListedColormap(('red', 'green')))
    plt.xlim(X1.min(), X1.max())
    plt.ylim(X2.min(), X2.max())
    for i, j in enumerate(np.unique(y_set)):
        plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
                    c = ListedColormap(('red', 'green'))(i), label = j)
    plt.title('Decision Tree Classification (Training set)')
    plt.xlabel('Age')
    plt.ylabel('Estimated Salary')
    plt.legend()
    plt.show()
    

    将测试集结果进行可视化

    from matplotlib.colors import ListedColormap
    X_set, y_set = X_test, y_test
    X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
                         np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
    plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
                 alpha = 0.75, cmap = ListedColormap(('red', 'green')))
    plt.xlim(X1.min(), X1.max())
    plt.ylim(X2.min(), X2.max())
    for i, j in enumerate(np.unique(y_set)):
        plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
                    c = ListedColormap(('red', 'green'))(i), label = j)
    plt.title('Decision Tree Classification (Test set)')
    plt.xlabel('Age')
    plt.ylabel('Estimated Salary')
    plt.legend()
    plt.show()
    
    image

    相关文章

      网友评论

          本文标题:100天搞定机器学习|Day23-25 决策树及Python实现

          本文链接:https://www.haomeiwen.com/subject/ezffsctx.html