前序遍历
https://leetcode-cn.com/problems/binary-tree-preorder-traversal/
前序遍历:root、root->left、root->right
非递归实现需要一个辅助栈
class Solution {
public:
vector<int> preorderTraversal(TreeNode* root) {
vector<int> ret;
if (root == nullptr) {
return ret;
}
stack<TreeNode*> stk;
stk.push(root);
while (!stk.empty()) {
TreeNode* cur = stk.top();
stk.pop();
ret.push_back(cur->val);
if (cur->right) {
stk.push(cur->right);
}
if (cur->left) {
stk.push(cur->left);
}
}
return ret;
}
};
中序遍历
https://leetcode-cn.com/problems/binary-tree-inorder-traversal/
中序遍历:root->left、root、root->right
非递归实现需要一个辅助栈
vector<int> inorderTraversal(TreeNode* root) {
vector<int> ret;
if (root == nullptr) {
return ret;
}
stack<TreeNode*> stk;
TreeNode* mov = root;
while (mov != nullptr || !stk.empty()) {
while (mov != nullptr) {
stk.push(mov);
mov = mov->left;
}
if (!stk.empty()) {
TreeNode* cur = stk.top();
stk.pop();
ret.push_back(cur->val);
mov = cur->right;
}
}
return ret;
}
后序遍历
https://leetcode-cn.com/problems/binary-tree-postorder-traversal/
后序遍历:root->left、root->right、root
非递归实现需要一个辅助栈
具体过程:要保证根结点在左孩子和右孩子访问之后才能访问,因此对于任一结点P,先将其入栈。如果P不存在左孩子和右孩子,则可以直接访问它;或者P存在左孩子或者右孩子,但是其左孩子和右孩子都已被访问过了,则同样可以直接访问该结点。若非上述两种情况,则将P的右孩子和左孩子依次入栈,这样就保证了每次取栈顶元素的时候,左孩子在右孩子前面被访问,左孩子和右孩子都在根结点前面被访问。
class Solution {
public:
vector<int> postorderTraversal(TreeNode* root) {
stack<TreeNode*> stk;
vector<int> ret;
if (root == NULL) {
return ret;
}
TreeNode* pre = NULL;
stk.push(root);
while (!stk.empty()) {
TreeNode* cur = stk.top();
if ((cur->left == NULL && cur->right == NULL) || (pre != NULL && (pre == cur->left || pre == cur->right))) {
ret.push_back(cur->val);
pre = cur;
stk.pop();
} else {
if (cur->right) {
stk.push(cur->right);
}
if (cur->left) {
stk.push(cur->left);
}
}
}
return ret;
}
};
Reference
[1] https://www.cnblogs.com/dolphin0520/archive/2011/08/25/2153720.html
[2] https://leetcode-cn.com/circle/article/dn75YS/
网友评论