美文网首页
绿宝书读书笔记(Chapter 3)

绿宝书读书笔记(Chapter 3)

作者: 非常暴龙兽 | 来源:发表于2019-05-18 10:19 被阅读0次

Chapter 3 Calculus and Linear Algebra

Spend some time reviewing your college textbooks!

Limits and derivatives
  • derivative of y = \ln {x^{\ln x}}
    let u = \ln y=\ln (\ln {x^{\ln x}})
    we have
    \frac{du}{dx} = \frac{d(\ln y)}{dx} = \frac{1}{y} \frac{dy}{dx} = \frac{d \ln (\ln {x^{\ln x}})}{d x} = \frac{1}{x}\ln (\ln x) + \ln x \times \frac{d \ln \ln x}{d x}
    \frac{du}{dx}= \frac{1}{y} \frac{dy}{dx}= \frac{1}{x}\ln (\ln x) + \ln x \times \frac{1}{\ln x}\times \frac{1}{x}= \frac{1}{x}\ln (\ln x) + \frac{1}{x}
    \frac{dy}{dx} = y \times [\frac{1}{x}\ln (\ln x) + \frac{1}{x}]=\frac{\ln x ^ {\ln x}}{x}[1 + \ln (\ln x)]

  • Maximum and minimum
    e^\pi\pi^e谁更大?
    构造函数f(x)=\frac{\ln x }{x},则f'(x) = \frac{1-\ln x}{x^2}对于x>e恒为负,单调减,于是有\frac{\ln e}{e} > \frac{\ln \pi}{\pi},整理得 e^\pi > \pi^e
    另一种方法:e^x > 1+x,令x=\frac{\pi}{e}-1代入得e^{\frac{\pi}{e}-1}>1 + \frac{\pi}{e}-1,即e^{\frac{\pi}{e}}/e > {\pi}/{e},于是e^{\frac{\pi}{e}}>\pi,即e^\pi > \pi^e

  • L'Hospital's rule
    例题比较trivial,不写了

Integration
  • Basics of integration
    1,
    d(uv) = udv + vdu
    d(x\ln x) = (x\times 1/2)dx + \ln xdx
    \int \ln x dx = \int d(x\ln x) -\int dx = x\ln x -x + C
    2,
    \sec'x = \sec x \tan x
    \tan'x = \sec^2 x
    so \frac{d\ln|\sec x + \tan x|}{dx} = \sec x

  • applications of integration
    1,
    两个半径为1的圆柱十字交叉,求重叠部分体积。
    V = 2\times \int_0^r [(2r)^2-(2z)^2]dz=16/3r^3=16/3
    2,
    0点之前开始均匀下雪,铲雪机每分钟铲雪体积恒定。1小时铲了2公里,3小时铲了三公里,问什么时候开始下的雪?
    设在0点之前T时开始下雪,则\int_0^1 \frac{C}{T+t} dt = 2\int_0^2 \frac{C}{T+t} dt = 3
    消去C,有 (\frac{1+T}{T})^3 = (\frac{2+T}{T})^2解出T = \frac{\sqrt 5 -1}{2}

  • expected value using integration
    X \sim N(0, 1),then E[X|X>0] = \int_0 ^\infty xf(x)dx = \int_0 ^\infty x\frac{1}{\sqrt {2\pi}} e^{-1/2x^2}dx=\int_{-\infty} ^0 - \frac{1}{\sqrt{2\pi}}e^u du = \frac{1}{\sqrt{2\pi}}

Partial Derivatives and Multiple Integrals
  • Calculate
    \int_{-\infty}^{\infty} e^{-x^2/2}dx \int_{-\infty}^{\infty} e^{-y^2/2}dy = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} e^{-(x^2 + y^2)/2}dxdy = \int_0^\infty \int_o^{2\pi}e^{-(r^2\cos^2\theta+r^2\sin^2\theta)/2}rdrd\theta
    =\int_0^\infty \int_0^{2\pi} e^{-r^2/2}rdrd\theta = -\int_0^\infty e^{-r^2/2}d(-\frac{r^2}{2})\int_0^{2\pi}d\theta =2\pi
    x,y对称性可知,\int _{-\infty} ^{\infty} e^{-x^2/2}dx =\sqrt{2\pi},于是\int _0 ^{\infty} e^{-x^2/2}dx =\sqrt{\frac{\pi}{2}}
Important Calculus Methods
  • Tayler's series
    f(x) = f(x_0)+f'(x_0)(x-x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2+...+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+...
    A
    计算i^i:欧拉方程是这么证的:将e^i\theta, \cos\theta,i\sin\theta全部泰勒展开,自然可以得出e^{i\theta}=\cos\theta + i\sin\theta,然后令\theta = \pi/2得到e^{1\pi/2} = i,于是\ln i = i\pi/2,于是\ln(i^i)=i\ln i=i(i\pi/2)=-\pi/2,所以i^i = e^{-\pi/2}
    B
    证明(1+x)^n \geq1+nxfor allx>-1, n\geq2
    f(x)=(1+x)^nx_0=0处进行泰勒展开即可,能发现前两项就是1+nx,余项为正,得证
  • Newton's method
    A
    x_{n+1}=x_n - \frac{f(x_n)}{f'(x_n)}牛顿迭代
    解方程x^2=37,先给出f(x)=x^2-37,猜测x_0=6然后x_1=x_0 -\frac{f(x_0)}{f'(x_0)}=6-\frac{6^2 - 37}{2\times 6} = 6.083
    或者对f(x)=\sqrt xx=36处泰勒展开,f(37)\approx f(36)+f'(36)(37-36)=6.083
    再或者(6+y)^2 = 37,y^2+12y-1=0,忽略二阶项,即12y-1=0y = 0.083
    B
    求根的数值方法?
    Bisection method:f(\frac{a_n + b_n}{2})
    Newton's method:x_{n+1}=x_n - \frac{f(x_n)}{f'(x_n)}
    Secant method:x_{n+1}=x_n - \frac{x_n - x_{n-1}}{f(x_n)-f(x_{n-1})}f(x_n),即用线性近似来代替牛顿法中的求导,对于不容易取得导函数的形式很有用。
  • Lagrange multipliers
    函数f(x_1, x_2,...x_n)约束条件
    g_1((x_1, x_2,...x_n), g_2((x_1, x_2,...x_n),...g_k((x_1, x_2,...x_n)
    取乘数\lambda_1,\lambda_2,...\lambda_k
    列k个方程\nabla_{x_i} f(x) + \lambda_i \nabla_{x_i} g_i(x)=0
    可以解出极值点的x_1,x_2,...x_n\lambda
Ordinary differential equations
  • Separable differential aquations
    \frac{dy}{dx}=g(x)h(y)
    \int \frac{dy}{h(y)}=\int g(x)dx
    例题:y'=\frac{x-y}{x+y}
    let y = z - x,代入原方程可解出\int zdz = \int 2xdx + C
  • First-order linear differential equations
    \frac{dy}{dx}+P(x)y=Q(x)
    思路:Integrating factor I(x)=e^{\int P(x)dx}so that \frac{dI(x)}{dx}=I(x)P(x)
    we haveIQ=I(y'+Py)=Iy'+IPy=Iy'+I'y=(Iy)'
    then y = \frac{\int I(x)Q(x)dx}{I(x)}
又有了那种小学六年级突然学会乘法的感觉

例题:
y' + \frac{y}{x}=\frac{1}{x^2}y(1)=1, x>0
solution:P(x)=1/x, Q(x)=1/x^2
so I(x)=e^{\int P(x)dx}=e^{\ln x}=x
I(x)Q(x)=1/x
y=\frac{\int I(x)Q(x)dx}{I(x)}=\frac{\int (1/x)dx}{x}=\frac{\ln x + C}{x}
for y(1)=1, x>0, we have C=1

  • Homogeneous linear equations 齐次线性方程
    a(x)\frac{d^2y}{dx^2}+b(x)\frac{dy}{dx}+c(x)=0
    如果y_1,y_2是线性无关的两个解,那么任意的y(x)=c_1y_1(x)+c_2y_2(x)都是它的解。
    解方程ar^2+br+c=0,如果:
  1. r_1,r_2都是实数,r_1\ne r_2那么通解y=c_1e^{r_1x}+c_2e^{r_2x}
  2. r_1,r_2都是实数,r_1= r_2那么通解y=c_1e^{rx}+c_2xe^{rx}
  3. r_1,r_2是复数\alpha \pm i\beta那么通解y=e^{\alpha x}(c_1\cos\beta x+c_2\sin\beta x)
  • Nonhomogeneous linear equations
    a(x)\frac{d^2y}{dx^2}+b(x)\frac{dy}{dx}+c(x)=d(x)
    思路:找到一个特解y_p(x)满足a\frac{d^2y}{dx^2}+b\frac{dy}{dx}+c=d,找到一个通解y_g(x)满足a\frac{d^2y}{dx^2}+b\frac{dy}{dx}+c=0则原方程的通解y=y_g+y_p
Linear Algebra
  • Vectors: n\times 1column, array
  • Inner product/ dot product
  • Euclidean norm
    ||x||=\sqrt{\sum_{i=1}^n x_i^2}=\sqrt{x^T x}
    ||x-y||=\sqrt{(x-y)^T(x-y)}
    \cos \theta=\frac{x^Ty}{||x||||y||}
    两个向量的相关系数\rho = \cos \theta
  • QR decomposition
    将矩阵分解成一个正规正交矩阵Q与上三角形矩阵R。
    例题:linear least squares regression线性最小二乘法回归拟合using matrices
    y_i=\beta_0 x_{i,0}+\beta_1 x_{i,1}+...+\beta_{p-i}x_{i,p-i}+\epsilon _i,对全部i=1,...,n
    拦截项x_{i,0}恒等于1
    外部项x_{i,1},...,x_{i,p-1}
    现在要找到一组\beta = [\beta_0,\beta_1,...,\beta_{p-1}]^T
    使得\sum_{i=1}^n\epsilon_i^2最小
    n\times1的列向量Y=[Y_1,Y_2,...,Y_n]^T\epsilon=[\epsilon_1,\epsilon_2,...,\epsilon_n]^T
    n\times p矩阵X,使得Y=X\beta + \epsilon则:
    \min_\beta \sum_{i=1}^n\epsilon_i^2=\min_\beta(Y-X\beta)^T(Y-X\beta)
    f(\beta)=\beta(Y-X\beta)^T(Y-X\beta)
    f'(\beta)=0(X^TX)\beta=X^TY
    化成了A\beta=b的形式,有\beta = (X^TX)^{-1}X^TY
    这件事的前提:
  1. X和Y有线性关系Y=X\beta + \epsilon
  2. 期望E[\epsilon_i]=0
  3. 方差为常数var(\epsilon_i)=\sigma^2,非相关误差E[\epsilon_i \epsilon_j]=0, i\ne j
  4. no perfect multicollinearity 不是完美的多重共线性问题:\rho (x_i,x_j)\ne \pm 1, i\ne j 其中\rho是回归相关系数
  5. \epsilonx_i彼此独立
  • Determinant, eigenvalue and eigenvector
    行列式\mathrm{det}(A),特征值\lambda,特征向量x
    \mathrm{det}(A^T)=\mathrm{det}(A),\mathrm{det}(AB)=\mathrm{det}(A)\mathrm{det}(B),\mathrm{det}(A^{-1})=\frac{1}{\mathrm{det}(A)}
    矩阵特征方程\mathrm{det}(A-\lambda I)=0的实根即为矩阵的特征值。
    \mathrm{det}A = \lambda_1 \lambda_2 ...\lambda_n\sum_{i=1}^n \lambda_i = \mathrm{trace}(A)
    可对角化矩阵,当且仅当各个特征值线性无关。各个特征值即为对角矩阵的每一项。

  • Positive semidefinite/definite matrix 半正定/正定矩阵
    正定矩阵:

  1. x^TAx>0对所有非负n\times 1向量
  2. 所有特征值都为正
  3. all the upper left (or lower right) submatrics A_K,K=1,...,nhave positive determinants
    半正定矩阵:
  4. x^TAx>0对所有n\times 1向量
  5. 所有特征值非负
  6. all the upper left (or lower right) submatrics A_K,K=1,...,nhave non-negative determinants
    例题:xyz三个向量,xy相关系数0.8,xz相关系数0.8,求yz相关系数范围?

    构建如上矩阵,算出行列式为\mathrm{det(P)}=-\rho^2+1.28\rho-0.28,令其大于零,解不等式即可。
  • LU decomposition and Cholesky decomposition
    非奇异的n\times n矩阵
    LU: lower and upper triangular matrix
    A=LU
    可以解线性方程Ax=b
    LUx=b, Ux=y,Ly=b
    和计算A的行列式。
    \mathrm{det}(A)=\mathrm{det}(L)\mathrm{det}(U)=\Pi_{i=1}^nL_{i,i} \Pi_{j=1}^nU_{j,j},
    Cholesky 分解是把一个对称正定的矩阵表示成一个下三角矩阵L和其转置的乘积的分解。它要求矩阵的所有特征值必须大于零,故分解的下三角的对角元也大于零。Cholesky分解法又称平方根法,是当A为实对称正定矩阵时,LU三角分解法的变形。

Cholesky decomposition is useful in Monte Carlo simulation to generate correlated random variables

举个例子:
two N(0,1) random variables x_1,x_2 with a correlation \rho can be generated from independent N(0,1) random variables z_1,z_2 using:
x_1=z_1, x_2=\rho z_1 + \sqrt{1-\rho^2}z_2
推广到n维,X=[X_1,X_2,...,X_n]^T \sim N(\mu,\Sigma)其中mean\mu=[\mu_1,\mu_2,...\mu_n]^T,协方差矩阵\Sigma可以分解成\Sigma=R^TR,这样就有Z=[z_1,z_2,...,z_n]^T其中z_i都是彼此无关的随机数,服从N(0,1)分布。这样可以生成一组X=\mu+R^TZ使得X\sim N(\mu,\Sigma)

  • singular value decomposition(SVD)
    对于n\times pX,有奇异值分解X=UDV^T。也能用来生成上面的相关随机数。

相关文章

网友评论

      本文标题:绿宝书读书笔记(Chapter 3)

      本文链接:https://www.haomeiwen.com/subject/fapzaqtx.html