美文网首页
Cache_t结构分析

Cache_t结构分析

作者: _Luyouli | 来源:发表于2020-09-19 20:10 被阅读0次

    Cache_t初识

    我们在前面对类的结构探索中知道了类结构体成员如下

    struct objc_class : objc_object {
        // Class ISA;
        Class superclass;
        cache_t cache;             // formerly cache pointer and vtable
        class_data_bits_t bits;    // class_rw_t * plus custom rr/alloc flags
        ...
    }
    
    

    我们通过地址偏移探索知道在bits中包含了类的属性和方法,那么cache_t cache又是什么呢?
    从名字上我们可以简单的认知就是缓存,那究竟是不是缓存呢?它到底缓存了类中的什么信息呢?我们接下来就探索来cache_t

    Cache_t源码探索

    还是老规矩,从源码下手分析其结构,我们来到其源码的地方如下:

    struct cache_t {
    #if CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_OUTLINED
        explicit_atomic<struct bucket_t *> _buckets;
        explicit_atomic<mask_t> _mask;
    #elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_HIGH_16
        explicit_atomic<uintptr_t> _maskAndBuckets;
        mask_t _mask_unused;
        
        // How much the mask is shifted by.
        static constexpr uintptr_t maskShift = 48;
        
        // Additional bits after the mask which must be zero. msgSend
        // takes advantage of these additional bits to construct the value
        // `mask << 4` from `_maskAndBuckets` in a single instruction.
        static constexpr uintptr_t maskZeroBits = 4;
        
        // The largest mask value we can store.
        static constexpr uintptr_t maxMask = ((uintptr_t)1 << (64 - maskShift)) - 1;
        
        // The mask applied to `_maskAndBuckets` to retrieve the buckets pointer.
        static constexpr uintptr_t bucketsMask = ((uintptr_t)1 << (maskShift - maskZeroBits)) - 1;
        
        // Ensure we have enough bits for the buckets pointer.
        static_assert(bucketsMask >= MACH_VM_MAX_ADDRESS, "Bucket field doesn't have enough bits for arbitrary pointers.");
    #elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_LOW_4
        // _maskAndBuckets stores the mask shift in the low 4 bits, and
        // the buckets pointer in the remainder of the value. The mask
        // shift is the value where (0xffff >> shift) produces the correct
        // mask. This is equal to 16 - log2(cache_size).
        explicit_atomic<uintptr_t> _maskAndBuckets;
        mask_t _mask_unused;
    
        static constexpr uintptr_t maskBits = 4;
        static constexpr uintptr_t maskMask = (1 << maskBits) - 1;
        static constexpr uintptr_t bucketsMask = ~maskMask;
    #else
    #error Unknown cache mask storage type.
    #endif
        
    #if __LP64__
        uint16_t _flags;
    #endif
        uint16_t _occupied;
    ...
    
    }
    

    从源码我们可以看出cache_t依然是一个结构体,在里面做了诸多判断,我们首先弄清楚这些判断是什么意思,点进其中一个发现

    #if defined(__arm64__) && __LP64__
    #define CACHE_MASK_STORAGE CACHE_MASK_STORAGE_HIGH_16 //真机
    #elif defined(__arm64__) && !__LP64__
    #define CACHE_MASK_STORAGE CACHE_MASK_STORAGE_LOW_4 //真机 非64位
    #else
    #define CACHE_MASK_STORAGE CACHE_MASK_STORAGE_OUTLINED //MacOS、模拟器
    #endif
    

    显然这是对我们的架构进行了区分。可以看到在真机中把maskbuckets合并到一起为_maskAndBuckets
    通过源码得到cache_t包含了以下成员

    buckets探索

    点进buckets可以看到下面信息

    #if __arm64__
        explicit_atomic<uintptr_t> _imp;
        explicit_atomic<SEL> _sel;
    #else
        explicit_atomic<SEL> _sel;
        explicit_atomic<uintptr_t> _imp;
    #endif
    
    类结构

    对真机和非真机进行了判断,我们可以看到两个很重要的东西impsel,那么这是不是代表里面缓存类类的方法呢?同样我们可以通过地址偏移去分析。首先还是新建一个类SYPerson,添加个方法

    - (void)helloWorld;
    
    - (void)sayGoodJo;
    
    //调用
    SYPerson *person = [[SYPerson alloc]init];
            
    [person helloWorld];
            
    

    在方法调用前我们打下断点就行lldb调试打印如下

    //获取类的首地址
    (lldb) p/x pClass
    (Class) $0 = 0x0000000100002420 CCPerson
    //地址偏移0x10 即16位打印出cache_t地址
    (lldb) p (cache_t *)0x0000000100002430
    (cache_t *) $1 = 0x0000000100002430
    //打印cache_t信息
    (lldb) p *$1
    (cache_t) $2 = {
      _buckets = {
        std::__1::atomic<bucket_t *> = 0x0000000100794100 {
          _sel = {
            std::__1::atomic<objc_selector *> = ""
          }
          _imp = {
            std::__1::atomic<unsigned long> = 3265552
          }
        }
      }
      _mask = {
        std::__1::atomic<unsigned int> = 3
      }
      _flags = 32784
      _occupied = 1
    }
    //调用buckets()方法
    (lldb) p $2.buckets()
    (bucket_t *) $3 = 0x0000000100794100
    //打印buckets中的信息
    (lldb) p *$3
    (bucket_t) $4 = {
      _sel = {
        std::__1::atomic<objc_selector *> = ""
      }
      _imp = {
        std::__1::atomic<unsigned long> = 3265552
      }
    }
    //打印sel,发现了初始化的init方法
    (lldb) p $4.sel()
    (SEL) $5 = "init"
    //试图打印其它方法
    (lldb) p *($3+1)
    (bucket_t) $6 = {
      _sel = {
        std::__1::atomic<objc_selector *> = (null) //发现为空,说明只有一个init方法
      }
      _imp = {
        std::__1::atomic<unsigned long> = 0
      }
    }
    //接下来执行一个实例方法打印
    2020-09-19 18:59:40.848267+0800 KCObjc[8767:115568] SYPerson -- -[CCPerson helloWorld]
    //再次打印
    (lldb) p *($3+1)
    (bucket_t) $7 = {
      _sel = {
        std::__1::atomic<objc_selector *> = ""
      }
      _imp = {
        std::__1::atomic<unsigned long> = 10496
      }
    }
    //打印sel,这里可以看出在执行完helloWorld方法后在cache中就可以找到了,说明已经缓存进去了
    (lldb) p $7.sel()
    (SEL) $8 = "helloWorld"
    //打印imp
    (lldb) p $7.imp(pClass)
    (IMP) $9 = 0x0000000100000d20 (KCObjc`-[CCPerson helloWorld])
    

    通过lldb调试发现inithelloWorld都加入了缓存。验证了之前所说的buckets中缓存了方法.

    _occupied & _mask

    • _occupied表示哈希表中 sel-imp 的占用大小 (即可以理解为分配的内存中已经存储了sel-imp的的个数),
    • _mask是指掩码数据,用于在哈希算法或者哈希冲突算法中计算哈希下标,其中mask 等于capacity - 1

    cache_t在下层通过系统的算法分配内存空间时候会根据_occupied的值增加进行扩容,扩容后会将原来的内存都清除,重新开辟内存。

    相关文章

      网友评论

          本文标题:Cache_t结构分析

          本文链接:https://www.haomeiwen.com/subject/fbryyktx.html