美文网首页最优化
线性规划 (一) 线性规划的基本形式及各种概念

线性规划 (一) 线性规划的基本形式及各种概念

作者: 小小何先生 | 来源:发表于2019-12-07 09:23 被阅读0次

  在最优化中,目标函数和约束函数皆为线性函数的优化问题称为线性规划(LP),它是相对简单的最优化问题。

标准形式

  • 线性规划

  如下形式的线性规划记2-1
\left.\begin{array}{ll}{\min \sum_{j=1}^{n} c_{j} x_{j}} \\ {\text { s.t. } \sum_{j=1}^{n} a_{i j} x_{j}=b_{i},} & {i=1,2, \cdots, m} \\ {x_{j} \geq 0,} & {j=1,2, \cdots, n}\end{array}\right\}

  称为线性规划的标准形式。其中c_{j}称为价格系数b_{i}称为右端项

  采用向量-矩阵表示法,标准形式可以简写为如下形式,记为2-2:

\left.\begin{array}{c}{\min c^{T} x} \\ {\text {s.t. } A x=b} \\ {x \geq 0}\end{array}\right\}

  其中A=(a_{ij})_{m \times n}b=(b_{1}, \cdots, b_{m})^{T}c=(c_{1}, \cdots , c_{n})^{T}x=(x_{1},\cdots , x_{n})^{T}

  • 典范形式

  在下面进行理论分析时,经常把A看作由n个列向量构成的,即:

A=[a_{1},a_{2},\cdots ,a_{n}]

  其中第j列向量是a_{j}=[a_{1j},a_{2j},\cdots ,a_{mj}]^{T}。于是,2-2中的Ax=b可写成:

\sum_{j=1}^{n}x_{j}a_{j}=b

  若A中有m个列向量可以合并成单位矩阵,且b \geq 0,则此时的2-2称为线性规划的典范形式

一般形式化标准形

  对于一般形式的线性规划,比如标准形式中是求极小,而有时候给出的是求极大,所以我们需要将其化成标准形,然后对标准形做研究,得到通用的解法。

  那么实际问题中出现的非标准形式如何处理呢?有三个基本原则:

  • (1) 极大化极小

  如求max \sum_{j=1}^{n}c_{j}x_{j},可变为min \sum_{j=1}^{n}(-c_{j})x_{j}

  • (2) 松弛变量和剩余变量
      如约束中出现\leq,则在该约束中加上一个变量(称为松弛变量),并要求该变量非负;如出现\geq,则在该约束中减去一个变量(称为剩余变量)。

注意:新引入变量的价格系数全部设为零,因此目标函数中没有出现新变量。

  • (3) 自由变量
      以上讨论都考虑变量的取值是非负的。实际中,如果某些变量没有这种约束,也就是说,某些变量可以任意取值,那么这些变量称为自由变量。自由变量可以通过以下两种方法把它消除。
    • 第一种方法:引入两个非负变量x_{1}^{+}x_{1}^{-},令x_{1}=x_{1}^{+}-x_{1}^{-}。将其代入到线性规划的目标函数和约束函数中,自由变量 x_{1}就消除了。注意,求出新线性规划的最优点后,再利用x_{1}=x_{1}^{+}-x_{1}^{-}便可以定出x_{1}
    • 第二种方法:取一个包含x_{1}的等式约束,例如a_{i1}x_{1}+a_{i2}x_{2}+ \cdots + a_{im}x_{n}=b_{i}由此解出:
      x_{1}=\frac{b_{i}}{a_{i1}}-\frac{a_{i2}}{a_{i1}}x_{2} - \cdots - \frac{a_{in}}{a_{i1}}x_{n}

  第一种方法将增加变量的数目,导致问题的维数增大。第二种方法正好相反。

解的性质

  在介绍解的性质之前,先需要了解一下各种各样的解的概念。

  满足Ax=bx称为方程组Ax=b,而满足Ax=bx \geq 0x称为线性规划2-2的容许解。现在要定义一种特殊的容许解-基本容许解,而在介绍基本容许解之前需要介绍另一个概念:基。

定义:Am个线性无关列向量称为。基中的每个列向量称为基向量,而A中的其余列向量称为非基向量。由全体基向量合成的矩阵称为基矩阵,也简称为基。若基是单位矩阵,则称为标准基

定义: 在约束\sum_{j=1}^{n}x_{j}a_{j}=b中,确定一个基后,与基向量对应的变量称为基变量,与非基向量对应的变量称为非基变量

定义:x_{0}Ax=b的一个解。若它有m个分量所对应的A的列向量构成基B,而其余n-m个分量全部为0,则x_{0}称为约束Ax=b关于基B基本解。若x_{0}还满足x_{0} \geq 0x_{0}称为约束Ax=bx \geq 0关于基B基本容许解,也称为线性规划2-2关于基B的基本容许解。

  简单地说,在确定基之后,所有非基变量取值都为0的解是基本解,所有非基变量取值都为0的容许解是基本容许解

定义:B是2-2的一个基。若2-2存在关于B的基本容许解,则称B是2-2的容许基;否者称为非容许基。若容许基是单位矩阵,则称为标准容许基

  上述所涉及到的概念,总结如下,方便复习:

  • 容许解
  • 基向量
  • 非基向量
  • 基矩阵
  • 标准基
  • 基变量
  • 非基变量
  • 基本解
  • 基本容许解
  • 容许基
  • 非容许基
  • 标准容许基

定义: 若基本解中基变量的取值都不为0,则该解称为非退化的;否者称为退化的。若2-2的所有基本容许解都是非退化的,则线性规划2-2称为非退化的;否者称为退化的。

  若线性规划是非退化的,则容许基与其基本容许解是一一对应的。相反地,退化地基本容许解可能与多个容许基相对应,也就是说不同的容许基会有相同的容许解。

  • 基本容许解与极点地对应关系

  约束:
Ax=b, \ \ x \geq 0

  的基本容许解与这组约束所确定的容许集的极点在一定条件下是一一对应的。

定理:A是秩为mm \times n矩阵,D是由约束Ax=b, \ \ x \geq 0所确定的容许集,则XAx=b, \ \ x \geq 0的基本容许解的充要条件是xD的极点。

推论: 容许集D=\{x|Ax=b,x \geq 0\}的极点个数有限。其中假定A是秩为mm \times n矩阵。

  这里书上都有证明,这里我引用一位老师的话,定理都是证明给怀疑的人看的,如果你不怀疑,就不需要证明。如果你用过图解法。其实上面这个很好理解的。

定理: 线性规划若有容许解,则必有基本容许解。

定理: 线性规划若有最优解,则必有最优基本容许解。

我的微信公众号名称:深度学习与先进智能决策
微信公众号ID:MultiAgent1024
公众号介绍:主要研究分享深度学习、机器博弈、强化学习等相关内容!期待您的关注,欢迎一起学习交流进步!

相关文章

  • 线性规划 (一) 线性规划的基本形式及各种概念

      在最优化中,目标函数和约束函数皆为线性函数的优化问题称为线性规划(LP),它是相对简单的最优化问题。 标准形式...

  • 【数学建模算法】(2)线性规划的应用

    上一部分我们了解了线性规划的定义,基本形式和Matlab实现,那么这一部分我们介绍一些线性规划的应用。 可转化为线...

  • 数学建模-方法合集

    线性规划 线性规划问题 线性规划(Linear programming,简称LP)是运筹学中研究较早、发展较快、应...

  • 【数学建模算法】(6)非线性规划:定义和实例

    前面的几节基本都围绕着线性规划和可转化为线性规划的问题来介绍,这一节开始我们将介绍非线性规划 1.非线性规划 1....

  • 数学建模心得(1)

    1. 线性规划问题以及可以转换成线性规划问题。相应问题:机器工作安排,投资收益等。 python实现线性规划 - ...

  • 最优化模型

    数据挖掘之优化模型 1.1数学规划模型 线性规划、整数线性规划、非线性规划、多目标规划、动态规划。 1.2微分方程...

  • 5/30达摩院LP和MIP

    达摩院线性规划LP定义 线性规划主要是3个基本概念。决策变量、目标函数、约束条件。决策变量是需要计算的值,假设X1...

  • 数学建模——优化模型

    优化模型 数学规划模型 整数线性规划 在线性规划模型中,规划中的变量限制为整数时称为整数线性规划。 1. 变量全部...

  • 数学规划模型

    1.线性规划的求解方法 线性规划问题的标准形式为:或者写成矩阵形式:一般来说线性规划包括单纯形规划和多目标规划 1...

  • 线性规划的算法分析

    本章涉及知识点1、线性规划的定义2、可行区域、目标函数、可行解和最优解3、转线性规划为标准型4、转线性规划为松弛型...

网友评论

    本文标题:线性规划 (一) 线性规划的基本形式及各种概念

    本文链接:https://www.haomeiwen.com/subject/fdnygctx.html