Given an array nums and a target value k, find the maximum length of a subarray that sums to k. If there isn't one, return 0 instead.
Note:
The sum of the entire nums array is guaranteed to fit within the 32-bit signed integer range.
Example 1:
Input: nums = [1, -1, 5, -2, 3], k = 3
Output: 4
Explanation: The subarray [1, -1, 5, -2] sums to 3 and is the longest.
Example 2:
Input: nums = [-2, -1, 2, 1], k = 1
Output: 2
Explanation: The subarray [-1, 2] sums to 1 and is the longest.
Follow Up:
- Can you do it in O(n) time?
Solution: 思路与#560一致,用prefixSum array 和 hashtable来做
class Solution {
public int maxSubArrayLen(int[] nums, int k) {
if (nums == null || nums.length == 0)
return 0;
// construct prefixSum
// int[] prefixSum = new int[nums.length + 1];
// int prefix = 0;
// int index = 1;
// for (int num : nums) {
// prefix += num;
// prefixSum[index ++] = prefix;
// }
//for each j, in prefixSum array, find the maxisum size subarray sum equals k
// sum of subarray (i, j) = prefixSum [j] - prefixSum[i]
Map<Integer, Integer> prefixSumVsIndex = new HashMap<> ();
prefixSumVsIndex.put (0, -1);
int maxSize = 0;
int prefixSum = 0;
for (int j = 0; j < nums.length; j++) {
prefixSum += nums[j];
if (prefixSumVsIndex.containsKey (prefixSum - k)) {
int prefixIndex = prefixSumVsIndex.get (prefixSum - k);
maxSize = Math.max (maxSize, j - prefixIndex);
}
// 只需记录第一个出现的prefixSum的index,因为是从左向右遍历,往后的index肯定更大,不可能是max的
if (!prefixSumVsIndex.containsKey (prefixSum)) {
prefixSumVsIndex.put (prefixSum, j);
}
}
return maxSize;
}
}
网友评论