H:P intros H hypothesis
apply H (H may contain arrow)
assumption h:P direct of the form
***
Parameter H:Type.
Axiom h:H.
Theorem h' : H.
Proof.
apply h.
Qed.
***
Example below:
Section Minimal_prop_logic.
Variables P Q R T : Prop.
Theorem imp_trans : (P->Q)->(Q->R)->P->R.
Proof.
intros H H' p.
apply H'.
apply H.
assumption. (* p : P hypothesis *)
Qed.
Theorem delta : (P->P->Q)->P->Q.
Proof.
exact (fun (H:P->P->Q)(p:P) => H p p).
Qed.
End Minimal_prop_logic.
网友评论