美文网首页
A Concise Introduction to the Th

A Concise Introduction to the Th

作者: 赫尔特 | 来源:发表于2019-08-21 15:04 被阅读0次

A Concise Introduction to the Theory of Numbers- Baker A.

高木同学
  • 第二章

1.取整函数满足

[x+n]=n+[x]\ (n \in N_+)

[x/n]=[[x]/n] \ (用带余除法即可证明)

2.设p是素数,

l是最大的整数,满足\ p^l|n!\ ,

则有

1

as:C^n_m={m!\over{n!\times(m-n)!}}

For\, every\ prime\, number\ p:

We\,have\ l=\,\displaystyle \sum_{j=1}^\infty[n/p^j]

As\ [m/p^j]\geq[n/p^j]+[(m-n)/p^j]

So\ l_m\geq l_n+l_{m-n}

So\ \ C_m^n \ is\ an\ interger.

当然这个也可以用归纳法证明,比如利用恒等式

C_m^n=C_{m-1}^n+C_{m-1}^{n-1}

后面直接归纳即可。

推广:

2 3.Multiplicative functions
3 4.Euler's function
4
5

设n=2^a\cdot3^b\cdot5^c\cdot...\cdot p^\beta

则\displaystyle\sum_{d|n}\phi(d)=

(2^a-2^{a-1}+\ 2^{a-1}-2^{a-2}+\ +...+2^1-2^0+1)\cdot

(3^b-3^{b-1}+\ 3^{b-1}-3^{b-2}+\ +...+3^1-3^0+1)\cdot...

\cdot(p^\beta-p^{\beta-1}+\ p^{\beta-1}-p^{\beta-2}+\ +...+p^1-p^0+1)=

2^a\cdot3^b\cdot...\cdot p^\beta=n

5.Möbius function
Möbius function

6.

6 7.

以d为对象,对于每一个最大的整数k,满足kd\leq x,上述求和即是这些k相加,即:

\displaystyle\sum_{n\leq x} \ \displaystyle\sum_{d|n}\ 1=\displaystyle\sum_{d\leq x}\ \displaystyle\sum_{m\leq x/d}1

=\displaystyle\sum_{d\leq x}\ [x/d].

8.Average orders
Average orders are to determine the magnitude 'on average' of arithmetical functions f.

r(n):

7 8 9

10 11
9.Perfect numbers
A natural number n is said to be perfect if ,

in other words,n is equal to the sum of its divisors other than itself.

An\ even\ number\ is\ perfect\ if\ and \ only\ if

\ it\ has\ the\ form\ 2^{p-1}(2^p-1)

where\ both\ p\ and\ 2^p-1\ are\ primes.

充分性易证,必要性证明如下:

if\ \sigma(n)=2n,

We\ assume\ that\ n=2^km (k,m are intergers,m is odd.)

For\ 2^km:\sigma(2^km)=(2^{k+1}-1)\sigma(m)

as\ \sigma(n)=2n,

So:(2^{k+1}-1)\sigma(m)=2^{k+1}m

Let\ \sigma(m)=2^{k+1}l,\ then\ m=(2^{k+1}-1)l

if\ l>1,\ then\ \sigma(m)\geq l+m+1

But\ l+m=\sigma(m)

So:l=1,\sigma(m)=m+1

So\ m\ is\ a\ prime.

必要性得证

10.The Riemann zeta-function
The Riemann zeta-function
The Riemann zeta-function中文

相关文章

网友评论

      本文标题:A Concise Introduction to the Th

      本文链接:https://www.haomeiwen.com/subject/fhzbsctx.html