美文网首页
多段路径跟随

多段路径跟随

作者: 大龙10 | 来源:发表于2022-07-08 10:59 被阅读0次

    书名:代码本色:用编程模拟自然系统
    作者:Daniel Shiffman
    译者:周晗彬
    ISBN:978-7-115-36947-5
    第6章目录

    6.9 多段路径跟随

    1、多段路径跟随

    我们解决了单个线段的路径跟随问题,接下来该如何解决多个相连线段的路径跟随问题?让我们回顾小车沿着屏幕运动的例子,假设我们已经到了步骤3。

    • 步骤3:在路径上寻找一个目标位置


      图6-32
    • 为了寻找目标位置,我们必须找到线段上的法线交点。但现在的路径是由多个线段组成的,法线交点也有多个(如图6-32所示)。
      该选择哪个交点?这里有两个选择条件:
      (a)选择最近的法线交点;
      (b)这个交点必须位于路径内。

    • 如果只有一个点和一条无限长的直线,总能得到位于直线内的法线交点。但如果是一个点和一个线段,则不一定能找到位于线段内的法线交点。因此,如果法线交点不在线段内,我们就应该将它排除在外。得到符合条件的法线交点后(在上图中,只有两个符合条件的交点),我们需要挑选出最近的点作为目标位置。

    2、加入一个ArrayList对象

    • 为了实现这样的特性,我们要扩展Path类,加入一个ArrayList对象用于存放路径的顶点(代替之前的起点和终点)。
    class Path {
    
      // A Path is an arraylist of points (PVector objects)
      ArrayList<PVector> points;
      // A path has a radius, i.e how far is it ok for the boid to wander off
      float radius;
    
      Path() {
        // Arbitrary radius of 20
        radius = 20;
        points = new ArrayList<PVector>();
      }
    
      // Add a point to the path
      void addPoint(float x, float y) {
        PVector point = new PVector(x, y);
        points.add(point);
      }
      
      PVector getStart() {
         return points.get(0);
      }
    
      PVector getEnd() {
         return points.get(points.size()-1);
      }
    
    
      // Draw the path
      void display() {
        // Draw thick line for radius
        stroke(175);
        strokeWeight(radius*2);
        noFill();
        beginShape();
        for (PVector v : points) {
          vertex(v.x, v.y);
        }
        endShape();
        // Draw thin line for center of path
        stroke(0);
        strokeWeight(1);
        noFill();
        beginShape();
        for (PVector v : points) {
          vertex(v.x, v.y);
        }
        endShape();
      }
    }
    
    • 支持多段路径的Path类已经定义好,下面轮到Vehicle类处理多段路径了。之前我们已经学会如何为单个线段寻找法线交点,只需要加入一个循环就能得到所有线段的法线交点。
    for (int i = 0; i < p.points.size()-1; i++) {
        PVector a = p.points.get(i);
        PVector b = p.points.get(i+1);
        PVector normalPoint = getNormalPoint(predictLoc,a,b); 为每个线段寻找法线交点
    
    • 接下来,我们应该确保法线交点处在点a和点b之间。在本例中,路径的走向是由左向右,因此只需验证法线交点的x坐标是否位于a和b的x坐标之间。
    if (normalPoint.x < a.x || normalPoint.x > b.x) {
        normalPoint = b.get(); 如果无法找到法线交点,就把线段的终点当做法线交点
    }
    
    • 使用一个小技巧:如果法线交点不在线段内,我们就把线段的终点当做法线交点。这样可以确保小车始终留在路径内,即使它偏离了线段的边界。
    • 最后,我们需要选出离小车最近的法线交点。为了完成这个任务,我们从一个很大的“世界记录”距离开始,再一次遍历每个法线交点,看看它的距离是否打破了这个记录(比记录小)。每当某个法线交点打破了记录,我们就更新记录,把这个法线交点赋给target变量。循环结束时,target变量就是最近的法线交点。

    3、示例

    示例代码6-6 路径跟随

    boolean debug = true;
    
    // A path object (series of connected points)
    Path path;
    
    // Two vehicles
    Vehicle car1;
    Vehicle car2;
    
    void setup() {
      size(640, 360);
      // Call a function to generate new Path object
      newPath();
    
      // Each vehicle has different maxspeed and maxforce for demo purposes
      car1 = new Vehicle(new PVector(0, height/2), 2, 0.04);
      car2 = new Vehicle(new PVector(0, height/2), 3, 0.1);
    }
    
    void draw() {
      background(255);
      // Display the path
      path.display();
      // The boids follow the path
      car1.follow(path);
      car2.follow(path);
      // Call the generic run method (update, borders, display, etc.)
      car1.run();
      car2.run();
      
      car1.borders(path);
      car2.borders(path);
    
      // Instructions
      fill(0);
      text("Hit space bar to toggle debugging lines.\nClick the mouse to generate a new path.", 10, height-30);
    }
    
    void newPath() {
      // A path is a series of connected points
      // A more sophisticated path might be a curve
      path = new Path();
      path.addPoint(-20, height/2);
      path.addPoint(random(0, width/2), random(0, height));
      path.addPoint(random(width/2, width), random(0, height));
      path.addPoint(width+20, height/2);
    }
    
    public void keyPressed() {
      if (key == ' ') {
        debug = !debug;
      }
    }
    
    public void mousePressed() {
      newPath();
    }
    

    Vehicle .pde

    class Vehicle {
    
      // All the usual stuff
      PVector position;
      PVector velocity;
      PVector acceleration;
      float r;
      float maxforce;    // Maximum steering force
      float maxspeed;    // Maximum speed
    
        // Constructor initialize all values
      Vehicle( PVector l, float ms, float mf) {
        position = l.get();
        r = 4.0;
        maxspeed = ms;
        maxforce = mf;
        acceleration = new PVector(0, 0);
        velocity = new PVector(maxspeed, 0);
      }
    
      // Main "run" function
      public void run() {
        update();
        display();
      }
    
    
      // This function implements Craig Reynolds' path following algorithm
      // http://www.red3d.com/cwr/steer/PathFollow.html
      void follow(Path p) {
    
        // Predict position 50 (arbitrary choice) frames ahead
        // This could be based on speed 
        PVector predict = velocity.get();
        predict.normalize();
        predict.mult(50);
        PVector predictpos = PVector.add(position, predict);
    
        // Now we must find the normal to the path from the predicted position
        // We look at the normal for each line segment and pick out the closest one
    
        PVector normal = null;
        PVector target = null;
        float worldRecord = 1000000;  // Start with a very high record distance that can easily be beaten
    
        // Loop through all points of the path
        for (int i = 0; i < p.points.size()-1; i++) {
    
          // Look at a line segment
          PVector a = p.points.get(i);
          PVector b = p.points.get(i+1);
    
          // Get the normal point to that line
          PVector normalPoint = getNormalPoint(predictpos, a, b);
          // This only works because we know our path goes from left to right
          // We could have a more sophisticated test to tell if the point is in the line segment or not
          if (normalPoint.x < a.x || normalPoint.x > b.x) {
            // This is something of a hacky solution, but if it's not within the line segment
            // consider the normal to just be the end of the line segment (point b)
            normalPoint = b.get();
          }
    
          // How far away are we from the path?
          float distance = PVector.dist(predictpos, normalPoint);
          // Did we beat the record and find the closest line segment?
          if (distance < worldRecord) {
            worldRecord = distance;
            // If so the target we want to steer towards is the normal
            normal = normalPoint;
    
            // Look at the direction of the line segment so we can seek a little bit ahead of the normal
            PVector dir = PVector.sub(b, a);
            dir.normalize();
            // This is an oversimplification
            // Should be based on distance to path & velocity
            dir.mult(10);
            target = normalPoint.get();
            target.add(dir);
          }
        }
    
        // Only if the distance is greater than the path's radius do we bother to steer
        if (worldRecord > p.radius) {
          seek(target);
        }
    
    
        // Draw the debugging stuff
        if (debug) {
          // Draw predicted future position
          stroke(0);
          fill(0);
          line(position.x, position.y, predictpos.x, predictpos.y);
          ellipse(predictpos.x, predictpos.y, 4, 4);
    
          // Draw normal position
          stroke(0);
          fill(0);
          ellipse(normal.x, normal.y, 4, 4);
          // Draw actual target (red if steering towards it)
          line(predictpos.x, predictpos.y, normal.x, normal.y);
          if (worldRecord > p.radius) fill(255, 0, 0);
          noStroke();
          ellipse(target.x, target.y, 8, 8);
        }
      }
    
    
      // A function to get the normal point from a point (p) to a line segment (a-b)
      // This function could be optimized to make fewer new Vector objects
      PVector getNormalPoint(PVector p, PVector a, PVector b) {
        // Vector from a to p
        PVector ap = PVector.sub(p, a);
        // Vector from a to b
        PVector ab = PVector.sub(b, a);
        ab.normalize(); // Normalize the line
        // Project vector "diff" onto line by using the dot product
        ab.mult(ap.dot(ab));
        PVector normalPoint = PVector.add(a, ab);
        return normalPoint;
      }
    
    
      // Method to update position
      void update() {
        // Update velocity
        velocity.add(acceleration);
        // Limit speed
        velocity.limit(maxspeed);
        position.add(velocity);
        // Reset accelertion to 0 each cycle
        acceleration.mult(0);
      }
    
      void applyForce(PVector force) {
        // We could add mass here if we want A = F / M
        acceleration.add(force);
      }
    
    
      // A method that calculates and applies a steering force towards a target
      // STEER = DESIRED MINUS VELOCITY
      void seek(PVector target) {
        PVector desired = PVector.sub(target, position);  // A vector pointing from the position to the target
    
        // If the magnitude of desired equals 0, skip out of here
        // (We could optimize this to check if x and y are 0 to avoid mag() square root
        if (desired.mag() == 0) return;
    
        // Normalize desired and scale to maximum speed
        desired.normalize();
        desired.mult(maxspeed);
        // Steering = Desired minus Velocity
        PVector steer = PVector.sub(desired, velocity);
        steer.limit(maxforce);  // Limit to maximum steering force
    
          applyForce(steer);
      }
    
      void display() {
        // Draw a triangle rotated in the direction of velocity
        float theta = velocity.heading2D() + radians(90);
        fill(175);
        stroke(0);
        pushMatrix();
        translate(position.x, position.y);
        rotate(theta);
        beginShape(PConstants.TRIANGLES);
        vertex(0, -r*2);
        vertex(-r, r*2);
        vertex(r, r*2);
        endShape();
        popMatrix();
      }
    
      // Wraparound
      void borders(Path p) {
        if (position.x > p.getEnd().x + r) {
          position.x = p.getStart().x - r;
          position.y = p.getStart().y + (position.y-p.getEnd().y);
        }
      }
    }
    

    4、运行结果

    相关文章

      网友评论

          本文标题:多段路径跟随

          本文链接:https://www.haomeiwen.com/subject/figdbrtx.html