美文网首页
Java集合源码详解之ArrayList

Java集合源码详解之ArrayList

作者: JourWon | 来源:发表于2019-08-08 09:48 被阅读0次

    既然是看源码,那我们要怎么看一个类的源码呢?这里我推荐的方法是:

    1)看继承结构

    ​ 看这个类的层次结构,处于一个什么位置,可以在自己心里有个大概的了解。

    2)看构造方法

    ​ 在构造方法中,看做了哪些事情,跟踪方法中里面的方法。

    3)看常用的方法

    ​ 跟构造方法一样,这个方法实现功能是如何实现的

    :既然是源码,为什么要这样设计类,有这样的继承关系。这就要说到设计模式的问题了。所以我们要了解常用的设计模式,才能更深刻的去理解这个类。

    简介

    ArrayList 是 Java 集合框架中 List 接口的一个实现类。底层是数组,相当于动态数组。与 Java 中的数组相比,它的容量能动态增长。

    ArrayListVector的翻版,区别在于ArrayList是线程不安全的,而Vector则是线程安全的。但是Vector是一个较老的集合,具有很多缺点,不建议使用,这里我们就不对其进行分析了。

    ArrayList 可以说是我们使用最多的 List 集合,它有以下特点:

    • 它是基于数组实现的List类
    • 可以动态地调整容量
    • 有序的(元素输出顺序与输入顺序一致)
    • 元素可以为 null
    • 不同步,非线程安全,效率高
    • 查询快,增删慢
    • 占用空间更小,对比 LinkedList,不用占用额外空间维护链表结构

    ArrayList 为什么有这些优点呢?我们通过源码来分析分析。在阅读源码前先来看看ArrayList继承关系。

    继承关系图

    ArrayList继承关系图

    可以看到,ArrayListAbstractList的子类,同时实现了List接口。除此之外,它还实现了三个标识型接口,这几个接口都没有任何方法,仅作为标识表示实现类具备某项功能。RandomAccess表示实现类支持快速随机访问,Cloneable表示实现类支持克隆,具体表现为重写了clone方法,java.io.Serializable则表示支持序列化,如果需要对此过程自定义,可以重写writeObjectreadObject方法。

    成员变量

    // 序列号
    private static final long serialVersionUID = 8683452581122892189L;
    // 数组初始容量为 10
    private static final int DEFAULT_CAPACITY = 10;
    // 空对象数组
    private static final Object[] EMPTY_ELEMENTDATA = {};
    // 缺省空对象数组
    private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
    // 底层数据结构,数组
    transient Object[] elementData;
    // 数组元素个数,默认为0
    private int size;
    // 最大数组容量
    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
    

    构造方法

    //默认构造方法,初始为空数组。
    //只有插入一条数据后才会扩展为10,而实际上默认是空的
     public ArrayList() {
        this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
    }
    
    //根据指定容量创建对象数组
    public ArrayList(int initialCapacity) {
        if (initialCapacity > 0) {
            //创建initialCapacity大小的数组
            this.elementData = new Object[initialCapacity];
        } else if (initialCapacity == 0) {
            //创建空数组
            this.elementData = EMPTY_ELEMENTDATA;
        } else {
            throw new IllegalArgumentException("Illegal Capacity: "+
                                                   initialCapacity);
        }
    }
    
    /**
     * 构造一个包含指定集合的元素的列表,按照它们由集合的迭代器返回的顺序。
     */
    public ArrayList(Collection<? extends E> c) {
        //转换最主要的是toArray(),这在Collection中就定义了
        elementData = c.toArray();
        if ((size = elementData.length) != 0) {
            // c.toArray 有可能不返回一个 Object 数组
            if (elementData.getClass() != Object[].class)
                //使用 Arrays.copy 方法拷创建一个 Object 数组
                elementData = Arrays.copyOf(elementData, size, Object[].class);
        } else {
            // 替换为空数组
            this.elementData = EMPTY_ELEMENTDATA;
        }
    }
    

    以无参数构造方法创建 ArrayList 时,实际上初始化赋值的是一个空数组。当真正对数组进行添加元素操作时,才真正分配容量。即向数组中添加第一个元素时,数组容量扩为10。

    内部类

    (1)private class Itr implements Iterator<E>  
    (2)private class ListItr extends Itr implements ListIterator<E>  
    (3)private class SubList extends AbstractList<E> implements RandomAccess  
    (4)static final class ArrayListSpliterator<E> implements Spliterator<E>  
    

    ArrayList有四个内部类,其中的Itr是实现了Iterator接口,同时重写了里面的hasNext()next()remove() 等方法;其中的ListItr 继承 Itr,实现了ListIterator接口,同时重写了hasPrevious()nextIndex()previousIndex()previous()set(E e)add(E e) 等方法,所以这也可以看出了 Iterator和ListIterator的区别:ListIterator在Iterator的基础上增加了添加对象,修改对象,逆向遍历等方法,这些是Iterator不能实现的。

    核心方法

    add()方法(有四个)

    增和删是ArrayList最重要的部分,这部分代码需要我们细细研究

    //添加一个特定的元素到list的末尾
    public boolean add(E e) {
        //先确保elementData数组的长度足够,size是数组中数据的个数,因为要添加一个元素,所以size+1,先判断size+1的这个个数数组能否放得下,在这个方法中去判断数组长度是否够用
        ensureCapacityInternal(size + 1);  // Increments modCount!!
        //在数据中正确的位置上放上元素e,并且size++
        elementData[size++] = e;
        return true;
    }
    
    //在指定位置添加一个元素
    public void add(int index, E element) {
        rangeCheckForAdd(index);
    
        //先确保elementData数组的长度足够
        ensureCapacityInternal(size + 1);  // Increments modCount!!
        //将数据整体向后移动一位,空出位置之后再插入,效率不太好
        System.arraycopy(elementData, index, elementData, index + 1,
                             size - index);
        elementData[index] = element;
        size++;
    }
    
    // 校验插入位置是否合理
    private void rangeCheckForAdd(int index) {
        //插入的位置肯定不能大于size 和小于0
        if (index > size || index < 0)   
            //如果是,就报越界异常
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }
    
    //添加一个集合
    public boolean addAll(Collection<? extends E> c) {
        //把该集合转为对象数组
        Object[] a = c.toArray();
        int numNew = a.length;
        //增加容量
        ensureCapacityInternal(size + numNew);  // Increments modCount
        //挨个向后迁移
        System.arraycopy(a, 0, elementData, size, numNew);
        size += numNew;
        //新数组有元素,就返回 true
        return numNew != 0;
    }
    
    //在指定位置,添加一个集合
    public boolean addAll(int index, Collection<? extends E> c) {
        rangeCheckForAdd(index);
    
        Object[] a = c.toArray();
        int numNew = a.length;
        ensureCapacityInternal(size + numNew);  // Increments modCount
    
        int numMoved = size - index;
        //原来的数组挨个向后迁移
        if (numMoved > 0)
            System.arraycopy(elementData, index, elementData, index + numNew,
                             numMoved);
        //把新的集合数组 添加到指定位置
        System.arraycopy(a, 0, elementData, index, numNew);
        size += numNew;
        return numNew != 0;
    }
    

    虽说 System.arraycopy 是底层方法,但每次添加都后移一位还是不太好。

    对数组的容量进行调整

    以上两种添加数据的方式都调用到了ensureCapacityInternal这个方法,我们看看它是如何完成工作的

    //确保内部容量够用
    private void ensureCapacityInternal(int minCapacity) {
        ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
    }
    
    //计算容量。判断初始化的elementData是不是空的数组,如果是空的话,返回默认容量10与minCapacity=size+1的较大值者。
    private static int calculateCapacity(Object[] elementData, int minCapacity) {
        if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
            return Math.max(DEFAULT_CAPACITY, minCapacity);
        }
        return minCapacity;
    }
    
    //确认实际的容量,这个方法就是真正的判断elementData是否够用
    private void ensureExplicitCapacity(int minCapacity) {
        modCount++;
    
        //minCapacity如果大于了实际elementData的长度,那么就说明elementData数组的长度不够用,不够用那么就要增加elementData的length。这里有的小伙伴就会模糊minCapacity到底是什么呢,这里解释一下
    
    /**
         * 当我们要 add 进第1个元素到 ArrayList 时,elementData.length 为0 (因为还是一个空的 list),因为执行了 `ensureCapacityInternal()` 方法 ,所以 minCapacity 此时为10。此时,`minCapacity - elementData.length > 0 `成立,所以会进入 `grow(minCapacity)` 方法。
         * 当add第2个元素时,minCapacity 为2,此时e lementData.length(容量)在添加第一个元素后扩容成 10 了。此时,`minCapacity - elementData.length > 0 ` 不成立,所以不会进入 (执行)`grow(minCapacity)` 方法。
         * 添加第3、4···到第10个元素时,依然不会执行grow方法,数组容量都为10。
         * 直到添加第11个元素,minCapacity(为11)比elementData.length(为10)要大。进入grow方法进行扩容。
         */
        // overflow-conscious code
        if (minCapacity - elementData.length > 0)
            //ArrayList能自动扩展大小的关键方法就在这里了
            grow(minCapacity);
    }
    
    //扩容核心方法
    private void grow(int minCapacity) {
        //将扩充前的elementData大小给oldCapacity
        // overflow-conscious code
        int oldCapacity = elementData.length;
        //新容量newCapacity是1.5倍的旧容量oldCapacity
        int newCapacity = oldCapacity + (oldCapacity >> 1);
        //这句话就是适应于elementData就空数组的时候,length=0,那么oldCapacity=0,newCapacity=0,所以这个判断成立,在这里就是真正的初始化elementData的大小了,就是为10。
        if (newCapacity - minCapacity < 0)
            newCapacity = minCapacity;
        //如果newCapacity超过了最大的容量限制,就调用hugeCapacity,也就是将能给的最大值给newCapacity
        if (newCapacity - MAX_ARRAY_SIZE > 0)
            newCapacity = hugeCapacity(minCapacity);
        //新的容量大小已经确定好了,就copy数组,改变容量大小。
        // minCapacity is usually close to size, so this is a win:
        elementData = Arrays.copyOf(elementData, newCapacity);
    }
    
    //这个就是上面用到的方法,很简单,就是用来赋最大值。
    private static int hugeCapacity(int minCapacity) {
        if (minCapacity < 0) // overflow
            throw new OutOfMemoryError();
        //如果minCapacity都大于MAX_ARRAY_SIZE,那么就Integer.MAX_VALUE返回,反之将MAX_ARRAY_SIZE返回。因为maxCapacity是三倍的minCapacity,可能扩充的太大了,就用minCapacity来判断了。
        //Integer.MAX_VALUE:2147483647   MAX_ARRAY_SIZE:2147483639  也就是说最大也就能给到第一个数值。还是超过了这个限制,就要溢出了。相当于arraylist给了两层防护。
        return (minCapacity > MAX_ARRAY_SIZE) ?
            Integer.MAX_VALUE :
        MAX_ARRAY_SIZE;
    }
    

    至此,我们彻底明白了ArrayList的扩容机制了。首先创建一个空数组elementData,第一次插入数据时直接扩充至10,然后如果elementData的长度不足,就扩充至1.5倍,如果扩充完还不够,就使用需要的长度作为elementData的长度。

    大数据插入问题

    这样的方式显然比我们例子中好一些,但是在遇到大量数据时还是会频繁的拷贝数据。那么如何缓解这种问题呢,ArrayList为我们提供了两种可行的方案:

    • 使用ArrayList(int initialCapacity)这个有参构造,在创建时就声明一个较大的大小,这样解决了频繁拷贝问题,但是需要我们提前预知数据的数量级,也会一直占有较大的内存。
    • 除了添加数据时可以自动扩容外,我们还可以在插入前先进行一次扩容。只要提前预知数据的数量级,就可以在需要时直接一次扩充到位,与ArrayList(int initialCapacity)相比的好处在于不必一直占有较大内存,同时数据拷贝的次数也大大减少了。这个方法就是ensureCapacity(int minCapacity),其内部就是调用了ensureCapacityInternal(int minCapacity)

    我们这里使用ensureCapacity()方法测试

    public class EnsureCapacityTest {
        public static void main(String[] args) {
            ArrayList<Object> list = new ArrayList<Object>();
            final int N = 10000000;
            long startTime = System.currentTimeMillis();
            for (int i = 0; i < N; i++) {
                list.add(i);
            }
            long endTime = System.currentTimeMillis();
            System.out.println("使用ensureCapacity方法前:" + (endTime - startTime));
    
            list = new ArrayList<Object>();
            long startTime1 = System.currentTimeMillis();
            list.ensureCapacity(N);
            for (int i = 0; i < N; i++) {
                list.add(i);
            }
            long endTime1 = System.currentTimeMillis();
            System.out.println("使用ensureCapacity方法后:" + (endTime1 - startTime1));
        }
    }
    

    运行结果

    使用ensureCapacity方法前:2700
    使用ensureCapacity方法后:1054
    

    通过运行结果,我们可以很明显的看出向 ArrayList 添加大量元素之前最好先使用ensureCapacity 方法,以减少增量重新分配的次数

    remove()方法

    其实这几个删除方法都是类似的。

    //根据索引删除指定位置的元素
    public E remove(int index) {
        //检查index的合理性
        rangeCheck(index);
        //这个作用很多,比如用来检测快速失败的一种标志。
        modCount++;
        //通过索引直接找到该元素
        E oldValue = elementData(index);
    
        //计算要移动的位数。
        int numMoved = size - index - 1;
        if (numMoved > 0)
            //移动元素,挨个往前移一位。
            System.arraycopy(elementData, index+1, elementData, index,
                             numMoved);
        //将--size上的位置赋值为null,让gc(垃圾回收机制)更快的回收它。
        elementData[--size] = null; // clear to let GC do its work
        //返回删除的元素。
        return oldValue;
    }
    
    //从此列表中删除指定元素的第一个匹配项,如果存在,则删除。通过元素来删除该元素,就依次遍历,如果有这个元素,就将该元素的索引传给fastRemobe(index),使用这个方法来删除该元素,fastRemove(index)方法的内部跟remove(index)的实现几乎一样,这里最主要是知道arrayList可以存储null值
    public boolean remove(Object o) {
        if (o == null) {
            //挨个遍历找到目标
            for (int index = 0; index < size; index++)
                if (elementData[index] == null) {
                    //快速删除
                    fastRemove(index);
                    return true;
                }
        } else {
            for (int index = 0; index < size; index++)
                if (o.equals(elementData[index])) {
                    fastRemove(index);
                    return true;
                }
        }
        return false;
    }
    
    //内部方法,“快速删除”,就是把重复的代码移到一个方法里
    private void fastRemove(int index) {
        modCount++;
        int numMoved = size - index - 1;
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                             numMoved);
        elementData[--size] = null; // clear to let GC do its work
    }
    
    //删除或者保留指定集合中的元素
    //用于两个方法,一个removeAll():它只清除指定集合中的元素,retainAll()用来测试两个集合是否有交集。 
    private boolean batchRemove(Collection<?> c, boolean complement) {
        //将原集合,记名为A
        final Object[] elementData = this.elementData;
        //r用来控制循环,w是记录有多少个交集
        int r = 0, w = 0;
        boolean modified = false;
        try {
            //遍历 ArrayList 集合
            for (; r < size; r++)
                //参数中的集合c一次检测集合A中的元素是否有
                if (c.contains(elementData[r]) == complement)
                    //有的话,就给集合A
                    elementData[w++] = elementData[r];
        } finally {
            //发生了异常,直接把 r 后面的复制到 w 后面
            if (r != size) {
                //将剩下的元素都赋值给集合A
                System.arraycopy(elementData, r,
                                 elementData, w,
                                 size - r);
                w += size - r;
            }
            if (w != size) {
                //这里有两个用途,在removeAll()时,w一直为0,就直接跟clear一样,全是为null。
                //retainAll():没有一个交集返回true,有交集但不全交也返回true,而两个集合相等的时候,返回false,所以不能根据返回值来确认两个集合是否有交集,而是通过原集合的大小是否发生改变来判断,如果原集合中还有元素,则代表有交集,而元集合没有元素了,说明两个集合没有交集。
                // 清除多余的元素,clear to let GC do its work
                for (int i = w; i < size; i++)
                    elementData[i] = null;
                modCount += size - w;
                size = w;
                modified = true;
            }
        }
        return modified;
    }
    
    
    //保留公共的
    public boolean retainAll(Collection<?> c) {
        Objects.requireNonNull(c);
        return batchRemove(c, true);
    }
    
    //将elementData中每个元素都赋值为null,等待垃圾回收将这个给回收掉
    public void clear() {
        modCount++;
        //并没有直接使数组指向 null,而是逐个把元素置为空,下次使用时就不用重新 new 了
        for (int i = 0; i < size; i++)
            elementData[i] = null;
    
        size = 0;
    }
    

    总结:根据索引删除指定位置的元素,此时会把指定下标到数组末尾的元素挨个向前移动一个单位,并且会把数组最后一个元素设置为null,这样是为了方便之后将整个数组不被使用时,会被GC,可以作为小的技巧使用。

    get()方法

    public E get(int index) {
        // 检验索引是否合法
        rangeCheck(index);
    
        return elementData(index);
    }
    
    private void rangeCheck(int index) {
        if (index >= size)
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }
    

    说明:get函数会检查索引值是否合法(只检查是否大于size,而没有检查是否小于0),值得注意的是,在get函数中存在element函数,element函数用于返回具体的元素,具体函数如下:

    E elementData(int index) {
        return (E) elementData[index];
    }
    

    说明:返回的值都经过了向下转型(Object -> E),这些是对我们应用程序屏蔽的小细节。

    set()方法

    //设定指定下标索引的元素值
    public E set(int index, E element) {
        // 检验索引是否合法
        rangeCheck(index);
        // 旧值
        E oldValue = elementData(index);
        // 赋新值
        elementData[index] = element;
        // 返回旧值
        return oldValue;
    }
    

    indexOf()方法

    // 从首开始查找数组里面是否存在指定元素
    public int indexOf(Object o) {
        // 查找的元素为空
        if (o == null) { 
            // 遍历数组,找到第一个为空的元素,返回下标
            for (int i = 0; i < size; i++) 
                if (elementData[i]==null)
                    return i;
        } else { 
            // 查找的元素不为空
            // 遍历数组,找到第一个和指定元素相等的元素,返回下标
            for (int i = 0; i < size; i++) 
                if (o.equals(elementData[i]))
                    return i;
        } 
        // 没有找到,返回空
        return -1;
    }
    
    //返回列表中指定元素最后一次出现的索引,倒着遍历
    public int lastIndexOf(Object o) {
        if (o == null) {
            for (int i = size-1; i >= 0; i--)
                if (elementData[i]==null)
                    return i;
        } else {
            for (int i = size-1; i >= 0; i--)
                if (o.equals(elementData[i]))
                    return i;
        }
        return -1;
    }
    

    说明:从头开始查找与指定元素相等的元素,需要注意的是可以查找null元素,意味着ArrayList中可以存放null元素的。与此函数对应的lastIndexOf,表示从尾部开始查找。

    contains()方法

    //判断是否含有某个元素
    public boolean contains(Object o) {
        return indexOf(o) >= 0;
    }
    

    toArray()方法

    /**
         以正确的顺序返回一个包含此列表中所有元素的数组(从第一个到最后一个元素); 返回的数组的运行时类型是指定数组的运行时类型。 
         */
    public Object[] toArray() {
        //elementData:要复制的数组;size:要复制的长度
        return Arrays.copyOf(elementData, size);
    }
    
    public <T> T[] toArray(T[] a) {
        //如果只是要把一部分转换成数组
        if (a.length < size)
            // Make a new array of a's runtime type, but my contents:
            return (T[]) Arrays.copyOf(elementData, size, a.getClass());
        //全部元素拷贝到 数组 a
        System.arraycopy(elementData, 0, a, 0, size);
        if (a.length > size)
            a[size] = null;
        return a;
    }
    

    System.arraycopy()Arrays.copyOf()方法

    阅读源码的话,我们就会发现 ArrayList 中大量调用了这两个方法。比如:我们上面讲的扩容操作以及add(int index, E element)E remove(int index)toArray() 等方法中都用到了该方法!

    System.arraycopy() 方法

    System.arraycopy(...):将指定源数组中的数组从指定位置开始复制到目标数组的指定位置。

    // src:源对象
    // srcPos:源对象对象的起始位置
    // dest:目标对象
    // destPost:目标对象的起始位置
    // length:从起始位置往后复制的长度。
    // 这段的大概意思就是解释这个方法的用法,复制src到dest,复制的位置是从src的srcPost开始,到srcPost+length-1的位置结束,复制到destPost上,从destPost开始到destPost+length-1的位置上
    public static void arraycopy(Object src, int srcPos, Object dest, int destPos,
                 int length)
    

    简单的方法测试以下:

    public class ArraycopyTest {
    
        public static void main(String[] args) {
            int[] a = new int[10];
            a[0] = 0;
            a[1] = 1;
            a[2] = 2;
            a[3] = 3;
            System.arraycopy(a, 2, a, 3, 3);
            a[2] = 99;
            for (int i = 0; i < a.length; i++) {
                System.out.print(a[i] + " ");
            }
        }
    
    }
    

    结果:

    0 1 99 2 3 0 0 0 0 0 
    

    Arrays.copyOf()方法

    Array.copyOf() 选择指定的数组,截断或填充空值(如果需要),使副本具有指定的长度。以达到扩容的目的

    //Arrays的copyOf()方法传回的数组是新的数组对象,改变传回数组中的元素值,不会影响原来的数组。
    //copyOf()的第二个自变量指定要建立的新数组长度,如果新数组的长度超过原数组的长度,则保留数组默认值
    public static <T> T[] copyOf(T[] original, int newLength) {
        return (T[]) copyOf(original, newLength, original.getClass());
    }
    
    /**
     * @Description 复制指定的数组, 如有必要用 null 截取或填充,以使副本具有指定的长度
     * 对于所有在原数组和副本中都有效的索引,这两个数组相同索引处将包含相同的值
     * 对于在副本中有效而在原数组无效的所有索引,副本将填充 null,当且仅当指定长度大于原数组的长度时,这些索引存在
     * 返回的数组属于 newType 类
     *
     * @param original 要复制的数组
     * @param newLength 副本的长度
     * @param newType 副本的类
     * 
     * @return T 原数组的副本,截取或用 null 填充以获得指定的长度
     * @throws NegativeArraySizeException 如果 newLength 为负
     * @throws NullPointerException 如果 original 为 null
     * @throws ArrayStoreException 如果从 original 中复制的元素不属于存储在 newType 类数组中的运行时类型
     */
    
    public static <T,U> T[] copyOf(U[] original, int newLength, Class<? extends T[]> newType) {
        @SuppressWarnings("unchecked")
        T[] copy = ((Object)newType == (Object)Object[].class)
            ? (T[]) new Object[newLength]
            : (T[]) Array.newInstance(newType.getComponentType(), newLength);
        System.arraycopy(original, 0, copy, 0,
                         Math.min(original.length, newLength));
        return copy;
    }
    

    测试代码如下:

    public static void main(String[] args) {
            int[] a = new int[3];
            a[0] = 0;
            a[1] = 1;
            a[2] = 2;
            int[] b = Arrays.copyOf(a, 10);
            System.out.println("b.length " + b.length);
    
            for (int i : b) {
                System.out.print(i + " ");
            }
        }
    

    结果:

    b.length10
    0 1 2 0 0 0 0 0 0 0 
    

    两者联系与区别

    联系:
    看两者源代码可以发现copyOf()内部调用了System.arraycopy()方法
    区别:

    1. arraycopy()需要目标数组,将原数组拷贝到你自己定义的数组里,而且可以选择拷贝的起点和长度以及放入新数组中的位置
    2. copyOf()是系统自动在内部新建一个数组,并返回该数组。

    相关文章

      网友评论

          本文标题:Java集合源码详解之ArrayList

          本文链接:https://www.haomeiwen.com/subject/fistjctx.html