美文网首页
Spark 3.0发布啦,改进SQL,弃Python 2,更好的

Spark 3.0发布啦,改进SQL,弃Python 2,更好的

作者: 老夫不正经 | 来源:发表于2020-06-21 22:21 被阅读0次

    Apache Spark 3.0.0正式发布啦,Apache Spark 3.0是在Spark 2.x的基础上开发的,带来了新的想法和功能。

    Apache Spark 3.0.0

    Spark是一个开源的大数据处理、数据科学、机器学习和数据分析工作负载的统一引擎,自2010年首次发布以来,已经成长为最活跃的开源项目之一;支持Java、Scala、Python、R等语言,并为这些语言提供了相关的SDK

    Spark 3.0中的Spark SQL是这个版本中最活跃的组件,46%的已解决的问题都是是针对Spark SQL的,包括结构化流和MLlib,以及高层API,包括SQLDataFrames。在经过了大量优化后,Spark 3.0的性能比Spark 2.4快了大约2倍。

    Python是目前Spark上使用最广泛的语言;针对Python语言提供的PySparkPyPI上的月下载量超过500万。在Spark 3.0中,对PySpark的功能和可用性做了不少改进,包括用Python类型提示重新设计pandas UDF API,新的pandas UDF类型,以及更多的Pythonic错误处理。

    Python

    以下便是Spark 3.0中的功能亮点:包括自适应查询执行,动态分区修剪,ANSI SQL合规性,pandas API的重大改进,结构化流的新UI,调用R用户定义函数的速度提高了40倍,加速器感知的调度器,以及SQL参考文档

    把这些功能按照模块来划分就可以分为以下几个模块:

    • core、Spark SQL、Structured Streaming
    • MLlib
    • SparkR
    • GraphX
    • 放弃Python 2R 3.4以下的版的支持;
    • 修复一些已知的问题;

    core、Spark SQL、Structured Streaming

    突出功能

    1. 加速器感知调度器;
    2. 自适应查询;
    3. 动态分区修剪;
    4. 重新设计的pandas UDF API与类型提示;
    5. 结构化流用户界面;
    6. 目录插件API的支持;
    7. 支持Java 11
    8. 支持Hadoop 3
    9. 能够更好的兼容ANSI SQL

    性能提升

    1. 自适应查询;
    2. 动态分区修剪;
    3. 优化9项规则;
    4. 最小化表缓存同步性能优化;
    5. 将聚合代码分割成小函数;
    6. INSERTALTER TABLE ADD PARTITION命令中增加批处理;
    7. 允许聚合器注册为UDAF

    SQL兼容性增强

    1. 使用Proleptic Gregorian日历;
    2. 建立Spark自己的日期时间模式定义;
    3. 为表插入引入ANSI存储分配策略;
    4. 在表插入中默认遵循ANSI存储分配规则;
    5. 添加一个SQLConfspark.sql.ansi.enabled,用于开启ANSI模式;
    6. 支持聚合表达式的ANSI SQL过滤子句;
    7. 支持ANSI SQL OVERLAY功能;
    8. 支持ANSI嵌套方括号内的注释;
    9. 超出整数范围时抛出异常;
    10. 区间算术运算的溢出检查;
    11. 当无效字符串被转换为数字类型时,抛出异常;
    12. 使用区间乘法和除法的溢出行为与其他操作一致;
    13. chardecimal添加ANSI类型的别名;
    14. SQL解析器定义了ANSI兼容的保留关键字;
    15. ANSI模式开启时,禁止使用保留关键字作为标识符;
    16. 支持ANSI SQL.LIKE...ESCAPE语法;
    17. 支持ANSI SQL布尔-谓词语法;

    PySpark增强版

    1. 重新设计的pandas UDFs,并提供类型提示;
    2. 允许Pandas UDF采用pd.DataFrames的迭代器;
    3. 支持StructType作为Scalar Pandas UDF的参数和返回类型;
    4. 通过Pandas UDFs支持Dataframe Cogroup
    5. 增加mapInPandas,允许DataFrames的迭代器;
    6. 部分SQL函数也应该取数据列名;
    7. PySparkSQL异常更加Pythonic化;

    扩展性增强

    1. 目录插件;
    2. 数据源V2 API重构;
    3. Hive 3.03.1的版本的元存储支持;
    4. Spark插件接口扩展到驱动程序;
    5. 可通过自定义指标来扩展Spark指标系统;
    6. 为用于扩展列式处理支持提供了开发者API
    7. 使用DSV2的内置源迁移:parquet, ORC, CSV, JSON, Kafka, Text, Avro
    8. 允许在SparkExtensions中注入函数;

    连接器增强

    1. 在数据源表中支持spark.sql.statistics.fallBackToHdfs
    2. 升级Apache ORC1.5.9
    3. 支持CSV数据源的过滤器;
    4. 使用本地数据源优化插入分区Hive表;
    5. 升级Kafka2.4.1
    6. 新的内置二进制文件数据源,新的无操作批处理数据源和无操作流接收器;

    K8s中的原生Spark应用

    1. 使用K8S进行更灵敏的动态分配,并在K8S上增加对SparkKerberos支持;
    2. 使用Hadoop兼容的文件系统支持客户端依赖性;
    3. k8s后台增加可配置的认证秘密源;
    4. 支持K8s的子路径挂载;
    5. PySpark Bindings for K8S中把Python 3作为默认选项;

    MLib

    1. BinarizerStringIndexerStopWordsRemoverPySpark QuantileDiscretizer添加了多列支持;
    2. 支持基于树的特征转换;
    3. 增加了两个新的评估器MultilabelClassificationEvaluatorRankingEvaluator
    4. 增加了PowerIterationClusteringR API
    5. 添加了用于跟踪ML管道状态的Spark ML监听器;
    6. Python中的梯度提升树中添加了带有验证集的拟合。
    7. 增加了RobustScaler变压器;
    8. 添加了因子化机器分类器和回归器;
    9. 增加了高斯奈夫贝叶斯和互补奈夫贝叶斯;

    此外,在Spark 3.0中,Pyspark中的多类逻辑回归现在将返回LogisticRegressionSummary,而不是其子类BinaryLogisticRegressionSummarypyspark.ml.param.shared.Has* mixins也不再提供任何set(self, value)setter方法,而是使用各自的self.set(self., value)代替。

    SparkR

    通过矢量化的R gapply()dapply()createDataFramecollect()提高性能来优化SparkR的互操作性;

    还有 "eager execution "的R shellIDE以及迭代聚类的R API

    弃用组件

    1. 弃用Python 2的支持;
    2. 弃用R 3.4以下版本的支持;
    3. 弃用Deprecate UserDefinedAggregateFunction

    此次的Spark 3.0也算是一个大版本,不仅带来了不少新功能、也修复了很多已知的问题,在性能上有了很大的提升。

    自从Python官方宣布停止维护Python2之后,各大组件也是纷纷响应,都停止了Python的支持,各位项目学习Python的小伙伴也是可以考虑直接学习Python 3了。

    老夫虽不正经,但老夫一身的才华!关注我,获取更多编程科技知识。

    相关文章

      网友评论

          本文标题:Spark 3.0发布啦,改进SQL,弃Python 2,更好的

          本文链接:https://www.haomeiwen.com/subject/fkszxktx.html