美文网首页数学相关
线性代数之逆矩阵

线性代数之逆矩阵

作者: geekpy | 来源:发表于2017-02-05 21:21 被阅读813次

在之前的文章《线性代数之矩阵》中已经介绍了一些关于矩阵的基本概念,本篇文章主要就求解逆矩阵进行进一步总结。

余子式(Minor)

我们先看例子来直观的理解什么是余子式(Minor,后边将都用英文Minor,中文的翻译较乱)。

minor example
这个例子(我们假设矩阵为A)中我们看到A[1,1]的minor就是将A[1,1]所在的行和列删除后剩下的矩阵的行列式,假设我们把A[1,1]的minor记作M[1,1], 在这个例子中就是 M1,1

同样道理A[i, j]的minor就是去掉第i行和第j列剩下的矩阵的行列式。

Matrix of Minors

我们现在已经知道如何求解某个元素的minor了,现在将某个矩阵所有元素的minors求解出来,得出一个新的矩阵就叫matrix of minors,如下图所示就是我们示例中矩阵A的minor矩阵

minors of A

Matrix of Cofactors

首先要介绍Cofactor,我们把M[i,j]的cofactor记作C[i,j],我们可以有如下公式:

cofactor

通过这个计算公式,我们可以得到所有的M对应的C,这样也组成了一个矩阵,这就是matrix of cofactors,还以我们上边的例子来看下如何得到的matrix of cofactors,记作C

matrix of cofactors

当我们有了matrix of cofactors之后,我们就可以计算A的行列式了|A|,计算过程是用A的第一行的数值A[1,j]乘以相对应的cofactorC[1,j],然后将结果相加

|A| = 1x(-3) + 2x6 + 3x(-3)=0

当|A|=0时,我们就称A为奇异矩阵,若|A|!=0,我们就称A为非奇异矩阵。奇异矩阵是没有逆矩阵的。最后我想说的是我本来想求逆矩阵的,不凑巧找了个奇异矩阵,饶恕我吧:(

伴随矩阵 Adjugate Matrix

伴随矩阵是将matrix of cofactors进行转置(transpose)之后得到的矩阵,我们称作A的伴随矩阵,记作adj(A)。所谓转置就是将[i,j]的值与[j,i]的值进行互换,具体到我们的例子如下:

adjugate matrix

注:这个例子不太明显,实际上交换了所有C[i,j]与C[j,i]的值,比如C[2,3]和C[3,2]

由于本篇文章的例子A是一个奇异矩阵,因此没有逆矩阵,但如果是非奇异矩阵,我们则可以按照之前的公式求得逆矩阵。


逆矩阵计算

初等变换

求解逆矩阵除了上面的方法外,还可以用更加直观的方法进行求解,这就是初等变换,其原理就是根据A乘以A的逆等于单位矩阵I这个原理,感兴趣的同学可以看参考链接中的视频。

参考:

1,可汗公开课
2,minor introduction in wikipedia
3,Wyman的技术博客

相关文章

  • opengl-todo

    切面空间,再好好理解 立体贴图 线性代数,逆矩阵,法线矩阵

  • 矩阵基础11- 广义逆矩阵及应用

    一. 广义逆矩阵 1.1 广义逆矩阵概述 可逆矩阵在线性代数中地位重要,应用方便。但遗憾的是,不是所有的矩阵都是可...

  • numpy -- 实现线性代数

    Python 实现线性代数 m_n 与 n_k 这样的矩阵才能相乘 矩阵求逆 矩阵和矩阵的逆相乘结果为单位矩阵 qr分解

  • numpy.linalg矩阵求逆或伪逆

    最近做数据挖掘又接触到线性代数,把逆和伪逆简单总结一下。 求逆 该函数求矩阵的逆,要求矩阵a是方阵并且非奇异。 判...

  • 线性代数之逆矩阵

    在之前的文章《线性代数之矩阵》中已经介绍了一些关于矩阵的基本概念,本篇文章主要就求解逆矩阵进行进一步总结。 余子式...

  • 线性代数之——矩阵乘法和逆矩阵

    1. 矩阵乘法 如果矩阵 的列为 ,那么 的列就是 。 置换矩阵(permutation matrix) 在消...

  • 线性代数(6) 逆矩阵

    逆矩阵 这是矩阵的难点,矩阵只有逆矩阵,矩阵是不能被放在分母上,给一个矩阵 A 方阵的行列式,给一个方阵 那么方阵...

  • 透析矩阵,由浅入深娓娓道来—高数-线性代数-矩阵

    线性代数在科学领域有很多应用的场景,如下: 矩阵,是线性代数中涉及的内容, 线性代数是用来描述状态和变化的,而矩阵...

  • Tensorflow快餐教程(6) - 矩阵分解

    摘要:特征分解,奇异值分解,Moore-Penrose广义逆 矩阵分解 特征向量和特征值 我们在《线性代数》课学过...

  • 伪逆矩阵(广义逆矩阵)

    Inverse Matrix(逆矩阵)& Pseudoinverse Matrix(伪逆矩阵/广义逆矩阵)概念 伪...

网友评论

本文标题:线性代数之逆矩阵

本文链接:https://www.haomeiwen.com/subject/flseittx.html