2300: [HAOI2011]防线修建(平衡树动态维护凸包)

作者: AmadeusChan | 来源:发表于2018-11-19 18:17 被阅读0次

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2300

    刚开始看到删点不好操作,那么离线,然后变成加点,然后平衡树动态维护凸包来搞。

    代码(SBT):

    #include <cstdio>
    
    #include <algorithm>
    
    #include <cstring>
    
    #include <cmath>
    
     
    
    using namespace std ;
    
     
    
    #define update( t ) S( t ) = S( L( t ) ) + S( R( t ) ) + 1
    
    #define L( t ) left[ t ]
    
    #define R( t ) right[ t ]
    
    #define K( t ) key[ t ]
    
    #define S( t ) size[ t ]
    
    #define pre( t ) prefix[ t ]
    
    #define suff( t ) suffix[ t ]
    
     
    
    #define dist( p0 , p1 ) ( sqrt( ( p0.x - p1.x ) * ( p0.x - p1.x ) + ( p0.y - p1.y ) * ( p0.y - p1.y ) ) )
    
    #define cal( p0 , p1 ) ( ( p0.y - p1.y ) / ( p0.x - p1.x ) )
    
    #define Clear( x ) memset( x , 0 , sizeof( x ) )
    
     
    
    const double esp = 0.000000001 ;
    
    const int maxn = 100100 ;
    
    const int maxm = 200100 ;
    
     
    
    struct node {
    
        double x , y ;
    
        void print(  ) {
    
            printf( "( %.3f , %.3f )\n" , x , y ) ;
    
        }
    
        bool operator < ( const node &a ) const {
    
            return x - a.x < - esp ;
    
        }
    
        bool operator == ( const node &a ) const {
    
            return abs( x - a.x ) <= esp ;
    
        }
    
        bool operator > ( const node &a ) const {
    
            return x - a.x > esp ;
    
        }
    
    } key[ maxn ] ;
    
     
    
    node make( double _x , double _y ) {
    
        node u ;
    
        u.x = _x , u.y = _y ;
    
        return u ;
    
    }
    
     
    
    int left[ maxn ] , right[ maxn ] , size[ maxn ] , prefix[ maxn ] , suffix[ maxn ] , V , roof ;
    
     
    
    int q[ maxm ][ 2 ] , n , m ;
    
    double pos[ maxn ][ 2 ] , px , py , ans[ maxm ] , rec , h ;
    
    bool f[ maxn ] ;
    
     
    
    void Left( int &t ) {
    
        int k = R( t ) ;
    
        R( t ) = L( k ) ; update( t ) ;
    
        L( k ) = t ; update( k ) ;
    
        t = k ;
    
    }
    
     
    
    void Right( int &t ) {
    
        int k = L( t ) ;
    
        L( t ) = R( k ) ; update( t ) ;
    
        R( k ) = t ; update( k ) ;
    
        t = k ;
    
    }
    
     
    
    void maintain( int &t ) {
    
        if ( S( L( L( t ) ) ) > S( R( t ) ) ) {
    
            Right( t ) ;
    
            maintain( R( t ) ) ; maintain( t ) ;
    
            return ;
    
        }
    
        if ( S( R( L( t ) ) ) > S( R( t ) ) ) {
    
            Left( L( t ) ) ; Right( t ) ;
    
            maintain( L( t ) ) , maintain( R( t ) ) ; maintain( t ) ;
    
            return ;
    
        }
    
        if ( S( R( R( t ) ) ) > S( L( t ) ) ) {
    
            Left( t ) ;
    
            maintain( L( t ) ) ; maintain( t ) ;
    
            return ;
    
        }
    
        if ( S( L( R( t ) ) ) > S( L( t ) ) ) {
    
            Right( R( t ) ) ; Left( t ) ;
    
            maintain( L( t ) ) , maintain( R( t ) ) ; maintain( t ) ;
    
            return ;
    
        }
    
    }
    
     
    
    void Insert( node k , int &t ) {
    
        if ( ! t ) {
    
            t = ++ V ;
    
            S( t ) = 1 , K( t ) = k ;
    
            return ;
    
        }
    
        Insert( k , k < K( t ) ? L( t ) : R( t ) ) ;
    
        update( t ) ; maintain( t ) ;
    
    }
    
     
    
    void Delete( node k , int &t ) {
    
        if ( k == K( t ) ) {
    
            if ( ! L( t ) ) {
    
                t = R( t ) ; return ;
    
            } else if ( ! R( t ) ) {
    
                t = L( t ) ; return ;
    
            } else {
    
                Right( t ) ; Delete( k , R( t ) ) ;
    
            }
    
        } else Delete( k , k < K( t ) ? L( t ) : R( t ) ) ;
    
        update( t ) ; maintain( t ) ;
    
    }
    
     
    
    int Prefix( node k ) {
    
        int ret = 0 ;
    
        for ( int t = roof ; t ; t = k < K( t ) ? L( t ) : R( t ) ) if ( K( t ) < k ) {
    
            if ( ! ret || K( ret ) < K( t ) ) ret = t ;
    
        }
    
        return ret ;
    
    }
    
     
    
    int Suffix( node k ) {
    
        int ret = 0 ;
    
        for ( int t = roof ; t ; t = k < K( t ) ? L( t ) : R( t ) ) if ( K( t ) > k ) {
    
            if ( ! ret || K( ret ) > K( t ) ) ret = t ;
    
        }
    
        return ret ;
    
    }
    
     
    
    int Find( node k ) {
    
        for ( int t = roof ; t ; t = k < K( t ) ? L( t ) : R( t ) ) if ( K( t ) == k ) return t ;
    
        return 0 ;
    
    }
    
     
    
    void Push( node k ) {
    
        int t = Find( k ) ;
    
        if ( t ) {
    
            if ( K( t ).y >= k.y ) return ;
    
            rec -= ( dist( K( pre( t ) ) , K( t ) ) + dist( K( suff( t ) ) , K( t ) ) ) ;
    
            rec += dist( K( pre( t ) ) , K( suff( t ) ) ) ;
    
            suff( pre( t ) ) = suff( t ) , pre( suff( t ) ) = pre( t ) ;
    
            Delete( K( t ) , roof ) ;
    
        }
    
        int tp = Prefix( k ) , ts = Suffix( k ) ;
    
        if ( cal( K( tp ) , k ) <= cal( K( tp ) , K( ts ) ) ) return ;
    
        rec -= dist( K( tp ) , K( ts ) ) ;
    
        while ( K( tp ).x > esp ) {
    
            if ( cal( K( pre( tp ) ) , K( tp ) ) <= cal( K( tp ) , k ) ) {
    
                rec -= dist( K( pre( tp ) ) , K( tp ) ) ;
    
                Delete( K( tp ) , roof ) ;
    
            } else break ;
    
            tp = pre( tp ) ;
    
        }
    
        while ( h - K( ts ).x > esp ) {
    
            if ( cal( K( suff( ts ) ) , K( ts ) ) >= cal( K( ts ) , k ) ) {
    
                rec -= dist( K( suff( ts ) ) , K( ts ) ) ;
    
                Delete( K( ts ) , roof ) ;
    
            } else break ;
    
            ts = suff( ts ) ;
    
        }
    
        Insert( k , roof ) ;
    
        pre( suff( tp ) = V ) = tp , suff( pre( ts ) = V ) = ts ;
    
        rec += ( dist( K( tp ) , k ) + dist( K( ts ) , k ) ) ;
    
    }
    
     
    
    void Test( int t ) {
    
        for ( t = roof ; L( t ) ; t = L( t ) ) ;
    
        for ( ; t ; t = suff( t ) ) K( t ).print(  ) ;
    
    }
    
     
    
    int main(  ) {
    
        scanf( "%lf%lf%lf" , &h , &px , &py ) ;
    
        scanf( "%d" , &n ) ;
    
        memset( f , true , sizeof( f ) ) ;
    
        for ( int i = 0 ; i ++ < n ; ) scanf( "%lf%lf" , &pos[ i ][ 0 ] , &pos[ i ][ 1 ] ) ;
    
        scanf( "%d" , &m ) ;
    
        for ( int i = 0 ; i ++ < m ; ) {
    
            scanf( "%d" , &q[ i ][ 0 ] ) ;
    
            if ( q[ i ][ 0 ] == 1 ) {
    
                scanf( "%d" , &q[ i ][ 1 ] ) ;
    
                f[ q[ i ][ 1 ] ] = false ;
    
            }
    
        }
    
        Clear( left ) , Clear( right ) , Clear( size ) ;
    
        V = 3 ;
    
        S( roof = 2 ) = 3 ; K( roof ) = make( px , py ) , L( roof ) = pre( roof ) = 1 , R( roof ) = suff( roof ) = 3 ;
    
        S( 1 ) = S( 3 ) = 1 , suff( 1 ) = pre( 3 ) = 2 , K( 1 ) = make( 0 , 0 ) , K( 3 ) = make( h , 0 ) ;
    
        rec = dist( make( 0 , 0 ) , make( px , py ) ) + dist( make( px , py ) , make( h , 0 ) ) ;
    
        for ( int i = 0 ; i ++ < n ; ) if ( f[ i ] ) Push( make( pos[ i ][ 0 ] , pos[ i ][ 1 ] ) ) ;
    
        for ( int i = m ; i ; -- i ) {
    
            if ( q[ i ][ 0 ] == 1 ) {
    
                Push( make( pos[ q[ i ][ 1 ] ][ 0 ] , pos[ q[ i ][ 1 ] ][ 1 ] ) ) ;
    
            } else {
    
                ans[ i ] = rec ;
    
            }
    
    //      printf( "\n\n%d:\n" , i ) ;
    
    //      Test( roof ) ;
    
        }
    
        for ( int i = 0 ; i ++ < m ; ) if ( q[ i ][ 0 ] == 2 ) printf( "%.2f\n" , ans[ i ] ) ;
    
        return 0 ;
    
    }
    

    相关文章

      网友评论

        本文标题:2300: [HAOI2011]防线修建(平衡树动态维护凸包)

        本文链接:https://www.haomeiwen.com/subject/fmbafqtx.html