Description
Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses.
For example, given n = 3, a solution set is:
[
"((()))",
"(()())",
"(())()",
"()(())",
"()()()"
]
Solution
给定整数n,产生n对括号构成的配对字符串,常规的排列组合问题,递归和迭代两类解法,medium
- 递归法
left和right表示还剩多少'('、')'可以放置,因此对于'(',只要left>0即可以向下层调用,而对于')'必须保证right>left,否则无法完成配对
vector<string> generateParenthesis(int n) {
vector<string> ret;
this->dfsGenerateParenthesis(ret, "", n, n);
return ret;
}
void dfsGenerateParenthesis(vector<string>& ret, string s, int left, int right) {
if (left ==0 && right == 0) {
ret.push_back(s);
return ;
}
if (left > 0) {
this->dfsGenerateParenthesis(ret, s + '(', left - 1, right);
}
if (right > left) {
this->dfsGenerateParenthesis(ret, s + ')', left, right - 1);
}
}
- 迭代法
循环遍历,层次交换,每一轮的结果是在上一轮结果的基础上进行加工生成的,并且中间结果还需要携带left、right的字段信息,因此定义了新的struct
struct MyNode {
int left;
int right;
string path;
MyNode(int x, int y, string s) : left(x), right(y), path(s) {}
};
class Solution {
public:
vector<string> generateParenthesis(int n) {
MyNode node(n, n, "");
vector<MyNode> retInfo(1, node);
vector<string> ret;
for (int i = 0; i < 2 * n; ++i) { //一共要放置2*n个字符
vector<MyNode> curRetInfo;
for (int j = 0; j < retInfo.size(); ++j) {
int left = retInfo[j].left, right = retInfo[j].right;
string s = retInfo[j].path;
if (left > 0) {
MyNode node(left - 1, right, s + '(');
curRetInfo.push_back(node);
}
if (right > left) {
MyNode node(left, right - 1, s + ')');
curRetInfo.push_back(node);
}
}
retInfo = curRetInfo;
}
for (int k = 0; k < retInfo.size(); ++k) {
ret.push_back(retInfo[k].path);
}
return ret;
}
};
网友评论