转自 https://blog.csdn.net/u011109881/article/details/80379505
什么是哈希表,什么是哈希函数
hash函数就是根据key计算出应该存储地址的位置,而哈希表是基于哈希函数建立的一种查找表
哈希冲突
即不同key值产生相同的地址,H(key1)=H(key2)
不管hash函数设计的如何巧妙,总会有特殊的key导致hash冲突,特别是对动态查找表来说。
哈希冲突的解决方案
- 开放定制法
- 链地址法
- 公共溢出区法
建立一个特殊存储空间,专门存放冲突的数据。此种方法适用于数据和冲突较少的情况。 - 再散列法
准备若干个hash函数,如果使用第一个hash函数发生了冲突,就使用第二个hash函数,第二个也冲突,使用第三个……
开放定制法
链地址法
产生hash冲突后在存储数据后面加一个指针,指向后面冲突的数据
上面的例子,用链地址法则是下面这样:
链地址法
hash表的查找
查找过程和造表过程一致,假设采用开放定址法处理冲突,则查找过程为:
对于给定的key,计算hash地址index = H(key)
如果数组arr【index】的值为空 则查找不成功
如果数组arr【index】== key 则查找成功
否则 使用冲突解决方法求下一个地址,直到arr【index】== key或者 arr【index】==null
hash表的查找效率
决定hash表查找的ASL因素:
1)选用的hash函数
2)选用的处理冲突的方法
3)hash表的饱和度,装载因子 α=n/m(n表示实际装载数据长度 m为表长)
一般情况,假设hash函数是均匀的,则在讨论ASL时可以不考虑它的因素
hash表的ASL是处理冲突方法和装载因子的函数
前人已经证明,查找成功时如下结果:
hash表的查找效率
可以看到无论哪个函数,装载因子越大,平均查找长度越大,那么装载因子α越小越好?也不是,就像100的表长只存一个数据,α是小了,但是空间利用率不高啊,这里就是时间空间的取舍问题了。通常情况下,认为α=0.75是时间空间综合利用效率最高的情况。
上面的这个表可是特别有用的。假设我现在有10个数据,想使用链地址法解决冲突,并要求平均查找长度<2
那么有1+α/2 <2
α<2
即 n/m<2 (n=10)
m>10/2
m>5 即采用链地址法,使得平均查找长度< 2 那么m>5
之前我的博客讨论过各种树的平均查找长度,他们都是基于存储数据n的函数,而hash表不同,他是基于装载因子的函数,也就是说,当数据n增加时,我可以通过增加表长m,以维持装载因子不变,确保ASL不变。
那么hash表的构造应该是这样的:
推导过程
hash表的删除
首先链地址法是可以直接删除元素的,但是开放定址法是不行的,拿前面的双探测再散列来说,假如我们删除了元素1,将其位置置空,那 23就永远找不到了。正确做法应该是删除之后置入一个原来不存在的数据,比如-1
网友评论