美文网首页生物信息学学习R
经典信号通路作图工具包pathview

经典信号通路作图工具包pathview

作者: 生信杂谈 | 来源:发表于2018-03-11 18:22 被阅读219次

    介绍个数据整合和可视化的R包pathview

    首先安装包并载入数据:

    source("http://bioconductor.org/biocLite.R")
    biocLite("pathview") 
    library(pathview) 
    # 载入数据
    data(gse16873.d) 
    data(demo.paths) 
    

    基因表达变化数据框如下所示,行是基因ID,列是样本ID,变化范围是-1到1.


    对单样本做经典星号通路可视化,"Cell Cycle"通过gene.datapathway.id指定,表达谱文件是人类的,所以species="hsa"

    pv.out <- pathview(gene.data = gse16873.d[, 1], pathway.id = demo.paths$sel.paths[1], species = "hsa", out.suffix = "gse16873", kegg.native = T) 
    

    具体查看图里每个节点的数据,每个节点的kegg名和ID都如下表列出:

    head(pv.out$plot.data.gene) 
    

    如果想删除与自己数据里无关的节点:

    pv.out <- pathview(gene.data = gse16873.d[, 1], pathway.id = demo.paths$sel.paths[1], species = "hsa", out.suffix = "gse16873.2layer", kegg.native = F, sign.pos = demo.paths$spos[1], same.layer = F)
    

    将组合在一起的接节点画分开画:

    pv.out <- pathview(gene.data = gse16873.d[, 1], pathway.id = demo.paths$sel.paths[1], species = "hsa", out.suffix = "gse16873.split", kegg.native = F, sign.pos = demo.paths$spos[i], split.group = T) 
    

    完整画出所有节点之间的关系,包括间接联系:

    pv.out <- pathview(gene.data = gse16873.d[, 1], pathway.id = demo.paths$sel.paths[1],  species = "hsa", out.suffix = "gse16873.split.expanded", kegg.native = F,  sign.pos = demo.paths$spos[i], split.group = T, expand.node = T) 
    

    还可以将基因数据和化合物数据与代谢途径整合可视化,包括小分子、代谢物、酶等数据以及多样本作图均可以使用这个包。

    更多原创精彩视频敬请关注生信杂谈:

    相关文章

      网友评论

      本文标题:经典信号通路作图工具包pathview

      本文链接:https://www.haomeiwen.com/subject/foywfftx.html