美文网首页大数据 爬虫Python AI Sql
Python对微信好友进行简单统计分析

Python对微信好友进行简单统计分析

作者: 程序员爽爽 | 来源:发表于2019-05-28 16:48 被阅读15次

早些日子有人问我我的微信里面有一共多少朋友,我就随后拉倒了通讯录最下面就找到了微信一共有多少位好友。然后他又问我,这里面你认识多少人?这一句话问的我很无语。一千多个好友我真的不知道认识的人有多少。他还紧追着不放了,你知道你微信朋友的男女比例嘛?你知道你微信朋友大部分来自什么地方吗?

不知道不知道不知道!偶然有一天碰到大大的一条朋友圈,大概是对微信朋友做一个分析,于是乎我才想起我也可以做一些简单的统计,于是就有了今天的内容。今天的内容会以代码简单讲解结果展示为向导。

以下的代码内容只涉及一些简单的Python知识,稍微有一点Python知识的朋友都可以读下去。 如果你没有Python的知识你可能需要去学习一下Python,当然你也可以不用学,搭建好Python的环境就好,期间可能需要用到一些库需要自己去解决一下,在下文中也会详细诉述。

编程零基础应当如何开始学习 Python ? - 路人甲的回答网易云课堂上有哪些值得推荐的 Python 教程? - 路人甲的回答如何学习Python爬虫[入门篇] - 学习编程 - 知乎专栏

第一步:首先抓取微信朋友的资料

既然是要做统计和分析,第一步就是微信朋友的所有可以抓取的资料抓取出来。所谓有用的资料大致来说有以下几个内容:

昵称、微信号、城市、性别、星标好友、头像、个性签名、备注

每一项或者联合项可以做的统计

性别:好友性别统计

城市:好友地区分布

备注+昵称:大致统计认识的好友比例

头像:人脸识别

那么如何抓取呢?这里使用了之前有一位大神写的如何找出被删的好友的代码,修改部分为从提取json数据截断,对返回的json数据进行提取分别找到了以下的所需要的信息:

代码修改为:

#!/usr/bin/env python# encoding=utf-8from__future__importprint_functionimportosimportrequestsimportreimporttimeimportxml.dom.minidomimportjsonimportsysimportmathimportsubprocessimportsslimportthreadingimporturllib,urllib2DEBUG =FalseMAX_GROUP_NUM =2# 每组人数INTERFACE_CALLING_INTERVAL =5# 接口调用时间间隔, 间隔太短容易出现"操作太频繁", 会被限制操作半小时左右MAX_PROGRESS_LEN =50QRImagePath = os.path.join(os.getcwd(),'qrcode.jpg')tip =0uuid =''base_uri =''redirect_uri =''push_uri =''skey =''wxsid =''wxuin =''pass_ticket =''deviceId ='e000000000000000'BaseRequest = {}ContactList = []My = []SyncKey = []try: xrange range = xrangeexcept:# python 3passdefresponseState(func, BaseResponse):ErrMsg = BaseResponse['ErrMsg'] Ret = BaseResponse['Ret']ifDEBUGorRet !=0: print('func: %s, Ret: %d, ErrMsg: %s'% (func, Ret, ErrMsg))ifRet !=0:returnFalsereturnTruedefgetUUID():globaluuid url ='https://login.weixin.qq.com/jslogin'params = {'appid':'wx782c26e4c19acffb','fun':'new','lang':'zh_CN','_': int(time.time()), } r= myRequests.get(url=url, params=params) r.encoding ='utf-8'data = r.text# print(data)# window.QRLogin.code = 200; window.QRLogin.uuid = "oZwt_bFfRg==";regx =r'window.QRLogin.code = (\d+); window.QRLogin.uuid = "(\S+?)"'pm = re.search(regx, data) code = pm.group(1) uuid = pm.group(2)ifcode =='200':returnTruereturnFalsedefshowQRImage():globaltip url ='https://login.weixin.qq.com/qrcode/'+ uuid params = {'t':'webwx','_': int(time.time()), } r = myRequests.get(url=url, params=params) tip =1f = open(QRImagePath,'wb') f.write(r.content) f.close() time.sleep(1)ifsys.platform.find('darwin') >=0: subprocess.call(['open', QRImagePath])else: subprocess.call(['xdg-open', QRImagePath]) print('请使用微信扫描二维码以登录')defwaitForLogin():globaltip, base_uri, redirect_uri, push_uri url ='https://login.weixin.qq.com/cgi-bin/mmwebwx-bin/login?tip=%s&uuid=%s&_=%s'% ( tip, uuid, int(time.time())) r = myRequests.get(url=url) r.encoding ='utf-8'data = r.text# print(data)# window.code=500;regx =r'window.code=(\d+);'pm = re.search(regx, data) code = pm.group(1)ifcode =='201':# 已扫描print('成功扫描,请在手机上点击确认以登录') tip =0elifcode =='200':# 已登录print('正在登录...') regx =r'window.redirect_uri="(\S+?)";'pm = re.search(regx, data) redirect_uri = pm.group(1) +'&fun=new'base_uri = redirect_uri[:redirect_uri.rfind('/')]# push_uri与base_uri对应关系(排名分先后)(就是这么奇葩..)services = [ ('wx2.qq.com','webpush2.weixin.qq.com'), ('qq.com','webpush.weixin.qq.com'), ('web1.wechat.com','webpush1.wechat.com'), ('web2.wechat.com','webpush2.wechat.com'), ('wechat.com','webpush.wechat.com'), ('web1.wechatapp.com','webpush1.wechatapp.com'), ] push_uri = base_urifor(searchUrl, pushUrl)inservices:ifbase_uri.find(searchUrl) >=0: push_uri ='https://%s/cgi-bin/mmwebwx-bin'% pushUrlbreak# closeQRImageifsys.platform.find('darwin') >=0:# for OSX with Previewos.system("osascript -e 'quit app \"Preview\"'")elifcode =='408':# 超时pass# elif code == '400' or code == '500':returncodedeflogin():globalskey, wxsid, wxuin, pass_ticket, BaseRequest r = myRequests.get(url=redirect_uri) r.encoding ='utf-8'data = r.text# print(data)doc = xml.dom.minidom.parseString(data) root = doc.documentElementfornodeinroot.childNodes:ifnode.nodeName =='skey': skey = node.childNodes[0].dataelifnode.nodeName =='wxsid': wxsid = node.childNodes[0].dataelifnode.nodeName =='wxuin': wxuin = node.childNodes[0].dataelifnode.nodeName =='pass_ticket': pass_ticket = node.childNodes[0].data# print('skey: %s, wxsid: %s, wxuin: %s, pass_ticket: %s' % (skey, wxsid,# wxuin, pass_ticket))ifnotall((skey, wxsid, wxuin, pass_ticket)):returnFalseBaseRequest = {'Uin': int(wxuin),'Sid': wxsid,'Skey': skey,'DeviceID': deviceId, }returnTruedefwebwxinit():url = (base_uri +'/webwxinit?pass_ticket=%s&skey=%s&r=%s'% ( pass_ticket, skey, int(time.time())) ) params = {'BaseRequest': BaseRequest } headers = {'content-type':'application/json; charset=UTF-8'} r = myRequests.post(url=url, data=json.dumps(params),headers=headers) r.encoding ='utf-8'data = r.json()ifDEBUG: f = open(os.path.join(os.getcwd(),'webwxinit.json'),'wb') f.write(r.content) f.close()# print(data)globalContactList, My, SyncKey dic = data ContactList = dic['ContactList'] My = dic['User'] SyncKey = dic['SyncKey'] state = responseState('webwxinit', dic['BaseResponse'])returnstatedefwebwxgetcontact():url = (base_uri +'/webwxgetcontact?pass_ticket=%s&skey=%s&r=%s'% ( pass_ticket, skey, int(time.time())) ) headers = {'content-type':'application/json; charset=UTF-8'} r = myRequests.post(url=url,headers=headers) r.encoding ='utf-8'data = r.json()ifDEBUG: f = open(os.path.join(os.getcwd(),'webwxgetcontact.json'),'wb') f.write(r.content) f.close() dic = data MemberList = dic['MemberList']# 倒序遍历,不然删除的时候出问题..SpecialUsers = ["newsapp","fmessage","filehelper","weibo","qqmail","tmessage","qmessage","qqsync","floatbottle","lbsapp","shakeapp","medianote","qqfriend","readerapp","blogapp","facebookapp","masssendapp","meishiapp","feedsapp","voip","blogappweixin","weixin","brandsessionholder","weixinreminder","wxid_novlwrv3lqwv11","gh_22b87fa7cb3c","officialaccounts","notification_messages","wxitil","userexperience_alarm"]foriinrange(len(MemberList) -1,-1,-1): Member = MemberList[i]ifMember['VerifyFlag'] &8!=0:# 公众号/服务号MemberList.remove(Member)elifMember['UserName']inSpecialUsers:# 特殊账号MemberList.remove(Member)elifMember['UserName'].find('@@') !=-1:# 群聊MemberList.remove(Member)elifMember['UserName'] == My['UserName']:# 自己MemberList.remove(Member)returnMemberListdefsyncKey():SyncKeyItems = ['%s_%s'% (item['Key'], item['Val'])foriteminSyncKey['List']] SyncKeyStr ='|'.join(SyncKeyItems)returnSyncKeyStrdefsyncCheck():url = push_uri +'/synccheck?'params = {'skey': BaseRequest['Skey'],'sid': BaseRequest['Sid'],'uin': BaseRequest['Uin'],'deviceId': BaseRequest['DeviceID'],'synckey': syncKey(),'r': int(time.time()), } r = myRequests.get(url=url,params=params) r.encoding ='utf-8'data = r.text# print(data)# window.synccheck={retcode:"0",selector:"2"}regx =r'window.synccheck={retcode:"(\d+)",selector:"(\d+)"}'pm = re.search(regx, data) retcode = pm.group(1) selector = pm.group(2)returnselectordefwebwxsync():globalSyncKey url = base_uri +'/webwxsync?lang=zh_CN&skey=%s&sid=%s&pass_ticket=%s'% ( BaseRequest['Skey'], BaseRequest['Sid'], urllib.quote_plus(pass_ticket)) params = {'BaseRequest': BaseRequest,'SyncKey': SyncKey,'rr': ~int(time.time()), } headers = {'content-type':'application/json; charset=UTF-8'} r = myRequests.post(url=url, data=json.dumps(params)) r.encoding ='utf-8'data = r.json()# print(data)dic = data SyncKey = dic['SyncKey'] state = responseState('webwxsync', dic['BaseResponse'])returnstatedefheartBeatLoop():whileTrue: selector = syncCheck()ifselector !='0': webwxsync() time.sleep(1)defmain():globalmyRequestsifhasattr(ssl,'_create_unverified_context'): ssl._create_default_https_context = ssl._create_unverified_context headers = {'User-agent':'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/44.0.2403.125 Safari/537.36'} myRequests = requests.Session() myRequests.headers.update(headers)ifnotgetUUID(): print('获取uuid失败')returnprint('正在获取二维码图片...') showQRImage()whilewaitForLogin() !='200':passos.remove(QRImagePath)ifnotlogin(): print('登录失败')returnifnotwebwxinit(): print('初始化失败')returnMemberList = webwxgetcontact() threading.Thread(target=heartBeatLoop) MemberCount = len(MemberList) print('通讯录共%s位好友'% MemberCount) d = {} imageIndex =0forMemberinMemberList: imageIndex = imageIndex +1name ='/root/Desktop/friendImage/image'+str(imageIndex)+'.jpg'imageUrl ='https://wx.qq.com'+Member['HeadImgUrl'] r = myRequests.get(url=imageUrl,headers=headers) imageContent = (r.content) fileImage = open(name,'wb') fileImage.write(imageContent) fileImage.close() print('正在下载第:'+str(imageIndex)+'位好友头像') d[Member['UserName']] = (Member['NickName'], Member['RemarkName']) city = Member['City'] city ='nocity'ifcity ==''elsecity name = Member['NickName'] name ='noname'ifname ==''elsename sign = Member['Signature'] sign ='nosign'ifsign ==''elsesign remark = Member['RemarkName'] remark ='noremark'ifremark ==''elseremark alias = Member['Alias'] alias ='noalias'ifalias ==''elsealias nick = Member['NickName'] nick ='nonick'ifnick ==''elsenick print(name,' ^+*+^ ',city,' ^+*+^ ',Member['Sex'],' ^+*+^ ',Member['StarFriend'],' ^+*+^ ',sign,' ^+*+^ ',remark,' ^+*+^ ',alias,' ^+*+^ ',nick )if__name__ =='__main__': main() print('回车键退出...') input()

所返回的json结果如下图所示

昵称、微信号、城市、性别、星标好友、头像、个性签名、备注。提取以上信息,对头像图片进行下载,并对数据进行简单的清洗等等,最后一列为微信号不方便显示。

第二步:性别统计和地区分布

使用python的pandas科学计算库进行简单的统计,如果你没有用过,可以转至如下链接进行安装学习:【原】十分钟搞定pandas

只要掌握了非常简单的pandas只是就可以继续往下看做以下统计

(1)、所有好友的男女比例

(2)、所有好友的城市分布

(3)、统计认识的朋友以及占所有朋友的百分比

统计方法:所有朋友 - 没有备注的朋友 - 备注与昵称相同的朋友

(4)、统计认识的朋友中的男女比例

统计方法:对三的结果再进行男女划分即可得到结果

#-*- coding: UTF-8 -*- importpandasaspddf = pd.read_csv('/root/Desktop/friend02.csv')defcity():'''微信朋友圈的城市'''address = df['city'].value_counts()printaddressdefgender():'''微信朋友的性别比例

1:男 2:女 3:未知

'''gender = df['male'].value_counts()printgenderdefstar():'''星标好友

1:星标 0:非星标

'''star = df['star'].value_counts()printstardefremark():remark = df['remark'] name = df['name']  remarkCount =0maleCount =0femaleCount =0foriinrange(1,len(remark)):ifstr(remark[i]).strip() == str(name[i]).strip()orremark[i] ==' noremark ': remarkCount = remarkCount +1else:ifjudgeGender(i) =='male': maleCount = maleCount +1elifjudgeGender(i) =='female': femaleCount = femaleCount +1print'微信总朋友人数:',str(len(remark)),'\n'print'预计认识的总人数:',str(len(remark)-remarkCount),'\n'print'认识的人中汉子人数:',maleCount,'妹子人数:',femaleCountdefjudgeGender(index):'''判断传入的某个位置的用户的性别

参数:int行

返回结果:字符串

'''gender = df['gender']ifgender[index] =='1':return'male'elifgender[index] =='2':return'female'else:return'unknown'if__name__=='__main__': remark()

把结果做成简单的图表(主要使用了百度的echarts作图)(不得不说百度其他产品虽然不怎么样,但是百度的echarts还是不错的哟,他的官网:http://echarts.baidu.com/)

使用地图慧江苏省好友分布,这个编码我不知怎么回事,可能是浏览器问题,回头我用其它浏览器查看一下。(地图汇比较傻瓜:http://www.dituhui.com/)

最后再生成省份好友分布地图

最后运用opencv的图像识别进行人像识别,统计微信好友中用人像作为头像的好友人数。OpenCV的全称是:Open Source Computer Vision Library。OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows和Mac OS操作系统上。它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。

如果你对opencv不是很了解,你可以按照以下的链接进行学习。

你可以去它的官网:http://opencv.org/ (需要有一定的英语知识)

国内也有一些比较好的博客资源,比如以下两个

【OpenCV入门指南】第一篇 安装OpenCV 【OpenCV】入门教程

如下开始是对抓取的朋友头像进行遍历识别是否含有人脸,代码如下。

#!/usr/bin/env python

'''

face detection using haar cascades

USAGE:

facedetect.py [--cascade <cascade_fn>] [--nested-cascade <cascade_fn>] [<video_source>]

'''

# Python 2/3 compatibility

from __future__ import print_function

import numpy as np

import cv2

# local modules

from video import create_capture

from common import clock, draw_str

def detect(img, cascade):

rects = cascade.detectMultiScale(img, scaleFactor=1.3, minNeighbors=4, minSize=(30, 30),

flags=cv2.CASCADE_SCALE_IMAGE)

if len(rects) == 0:

return []

rects[:,2:] += rects[:,:2]

return rects

def draw_rects(img, rects, color):

for x1, y1, x2, y2 in rects:

cv2.rectangle(img, (x1, y1), (x2, y2), color, 2)

if __name__ == '__main__':

import sys, getopt

print(__doc__)

count = 0

for i in range(1,1192):

print(str(i))

args, video_src = getopt.getopt(sys.argv[1:], '', ['cascade=', 'nested-cascade='])

try:

video_src = video_src[0]

except:

video_src = 0

args = dict(args)

cascade_fn = args.get('--cascade', "../../data/haarcascades/haarcascade_frontalface_alt.xml")

nested_fn = args.get('--nested-cascade', "../../data/haarcascades/haarcascade_eye.xml")

cascade = cv2.CascadeClassifier(cascade_fn)

nested = cv2.CascadeClassifier(nested_fn)

cam = create_capture(video_src, fallback='synth:bg=../data/friend/friendImage/image'+str(i)+'.jpg:noise=0.05')

ret, img = cam.read()

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

gray = cv2.equalizeHist(gray)

rects = detect(gray, cascade)

vis = img.copy()

draw_rects(vis, rects, (0, 255, 0))

if not nested.empty():

if len(rects) == 0:

print('none')

else:

count = count + 1

print(str(count))

input()

执行以上代码统计出最后的结果

使用人像做头像的好友:59 因此不使用人像的1133,看来使用人像的人还是很少的。

运行提取人像头像的代码最后提取出的头像如下所示 ,不得不说Python的库真是十分的有用。(因为涉及到隐私,所以这里不会展示过多的头像)

最近仍然在研究签名以及头像的可用之处,也是欢迎大家一起学习交流。同时希望以上的内容可以提升一下大家的学习兴趣。关于微信好友的更多挖掘会不断进行。

(1)、人像头像与年龄之间的关系(由于微信没有年龄,于是想通过知乎进行推算)

(2)、个性签名与年龄性格之间的关系

(3)、微信号中所包含信息推算年龄层次,预测当前微信号年龄

最后小编自己也是一个有着6年工作经验的工程师,关于python编程,自己有做材料的整合,一个完整的python编程学习路线,学习资料和工具。想要这些资料的可以关注小编,加入python学习交流Q群735967233。

相关文章

网友评论

    本文标题:Python对微信好友进行简单统计分析

    本文链接:https://www.haomeiwen.com/subject/fpgdtctx.html